Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jensen, Jørgen L.

  • Google
  • 1
  • 2
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Brittle failure in timber connections loaded parallel to the grain4citations

Places of action

Chart of shared publication
Quenneville, Pierre
1 / 2 shared
Girhammar, Ulf Arne
1 / 15 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Quenneville, Pierre
  • Girhammar, Ulf Arne
OrganizationsLocationPeople

article

Brittle failure in timber connections loaded parallel to the grain

  • Quenneville, Pierre
  • Jensen, Jørgen L.
  • Girhammar, Ulf Arne
Abstract

An existing beam-on-elastic-foundation (BEF) model was used to determine the perpendicular-to-grain tensile stresses in timber members subjected to loading parallel to the grain by bolted connections. A set of relatively simple equations for the analysis of a Timoshenko beam of finite length on a Winkler foundation is given, and appropriate foundation stiffness values are discussed. While previous applications of the model have associated the foundation stiffness with the perpendicular-to-grain elastic strain in the timber, it is suggested that a fracture layer be introduced and the foundation stiffness be associated with the perpendicular-to-grain tensile strength and the mode I fracture energy of the wood. The latter estimation of the foundation stiffness, which leads to a so-called ‘quasi-non-linear fracture mechanics model’, has been applied with success to other problems where the BEF model has been used for the analysis of mode I fracture. An existing model for the analysis of the pure mode II fracture, which is also a quasi-non-linear fracture mechanics model based on similar assumptions as the proposed model for analysis of the mode I fracture, is reviewed. A simple way of handling mixed-mode fracture problems by means of the simple empirical interaction of the proposed pure mode I and pure mode II quasi-non-linear fracture mechanics models is discussed.

Topics
  • impedance spectroscopy
  • grain
  • strength
  • tensile strength
  • wood