People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martakis, Panagiotis
ETH Zurich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Static and dynamic rocking stiffness of shallow footings on sand: centrifuge modelling
Abstract
<jats:p> Small-strain foundation response has mostly been studied analytically, with limited experimental verification against 1g physical model tests. This paper revisits the problem of small-strain foundation response, conducting a series of centrifuge model tests, aiming to eliminate the limitations of 1g testing. A centrifuge modelling technique is developed, combining static pushover and dynamic impulse testing for similar systems. To allow for derivation of meaningful insights, a novel procedure for in-flight measurement of the distribution of shear modulus with depth is also developed. The latter combines spectral analysis of surface waves (SASW) measurement of the shear modulus G<jats:sub>0</jats:sub> at the surface, and estimation of the distribution of the shear modulus G with depth using acceleration measurements in shaking tests. A novel centrifuge tube–actuator is developed and employed to discharge spherical projectiles against single-degree-of-freedom models lying on shallow foundations on sand. This allows generating dynamic impulse excitation, which is used to measure the small-strain dynamic rocking stiffness. The developed actuator is versatile, and was also used for in-flight SASW testing. The centrifuge model tests are shown to confirm the widely used and well-known formulas. This good agreement can also be seen as a confirmation of the validity of the developed experimental techniques. </jats:p>