Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martakis, Panagiotis

  • Google
  • 1
  • 4
  • 13

ETH Zurich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Static and dynamic rocking stiffness of shallow footings on sand: centrifuge modelling13citations

Places of action

Chart of shared publication
Laue, Jan
1 / 4 shared
Anastasopoulos, Ioannis
1 / 2 shared
Chatzi, Eleni
1 / 12 shared
Taeseri, Damoun
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Laue, Jan
  • Anastasopoulos, Ioannis
  • Chatzi, Eleni
  • Taeseri, Damoun
OrganizationsLocationPeople

article

Static and dynamic rocking stiffness of shallow footings on sand: centrifuge modelling

  • Laue, Jan
  • Anastasopoulos, Ioannis
  • Chatzi, Eleni
  • Taeseri, Damoun
  • Martakis, Panagiotis
Abstract

<jats:p> Small-strain foundation response has mostly been studied analytically, with limited experimental verification against 1g physical model tests. This paper revisits the problem of small-strain foundation response, conducting a series of centrifuge model tests, aiming to eliminate the limitations of 1g testing. A centrifuge modelling technique is developed, combining static pushover and dynamic impulse testing for similar systems. To allow for derivation of meaningful insights, a novel procedure for in-flight measurement of the distribution of shear modulus with depth is also developed. The latter combines spectral analysis of surface waves (SASW) measurement of the shear modulus G<jats:sub>0</jats:sub> at the surface, and estimation of the distribution of the shear modulus G with depth using acceleration measurements in shaking tests. A novel centrifuge tube–actuator is developed and employed to discharge spherical projectiles against single-degree-of-freedom models lying on shallow foundations on sand. This allows generating dynamic impulse excitation, which is used to measure the small-strain dynamic rocking stiffness. The developed actuator is versatile, and was also used for in-flight SASW testing. The centrifuge model tests are shown to confirm the widely used and well-known formulas. This good agreement can also be seen as a confirmation of the validity of the developed experimental techniques. </jats:p>

Topics
  • impedance spectroscopy
  • surface