Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nanthagopalan, Prakash

  • Google
  • 2
  • 3
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Shear thickening of cementitious suspensions: effect of high solid volume fraction and hydrationcitations
  • 2020Onset and intensity of shear thickening in cementitious suspensions – A parametrical study17citations

Places of action

Chart of shared publication
Moorthi, P. V. P.
2 / 2 shared
Mio, Francesco Pra
1 / 1 shared
Ferrara, Liberato
1 / 449 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Moorthi, P. V. P.
  • Mio, Francesco Pra
  • Ferrara, Liberato
OrganizationsLocationPeople

article

Shear thickening of cementitious suspensions: effect of high solid volume fraction and hydration

  • Moorthi, P. V. P.
  • Nanthagopalan, Prakash
Abstract

<jats:p> During pumping of concrete, the lubrication layer (LL) formed at the interface of the concrete and the pipe plays a crucial role in facilitating the process. Shear thickening in this layer affects the concrete pumping significantly. However, very few studies are available in understanding the onset and intensity of shear thickening behavior of the lubrication layer. In this study, the effect of solid volume fraction (SVF), superplasticizer (SP) dosage, supplementary cementitious materials (SCMs) and hydration on the shear thickening (Continuous and discontinuous) behavior of cementitious suspensions are investigated. Results show that an increase in SVF, reduces the shear thickening intensity in case of cement (OPC) systems whereas the intensity is amplified for systems with fly ash (FA) and ground granulated blast furnace slag (GGBS). An increment in the SP dosage results in an early onset and increases the shear thickening intensity, regardless of the binder used. GGBS based systems show the highest shear thickening intensity, followed by OPC and FA based systems. Based on the results, it is evident that the optimization of SP dosage for OPC based systems needs to be carried out based on the structural build-up, while for FA or GGBS based systems, the SP optimization needs to be carried out based on shear thickening behavior with respect to hydration. </jats:p>

Topics
  • impedance spectroscopy
  • cement