Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nelson, Levingshan Augusthus

  • Google
  • 4
  • 8
  • 58

University of Salford

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Analytical modelling of bond-slip failure between epoxy bonded FRP and concrete substrate23citations
  • 2020Validation of a finite element modelling approach on soil-foundation-structure interaction of a multi-storey wall-frame structure under dynamic loadings22citations
  • 2019Shear behaviour of lightweight concrete beams strengthened with CFRP composite13citations
  • 2019Sustainable high-performance concrete using metakaolin additive and polymer admixture : mechanical properties, durability and microstructurecitations

Places of action

Chart of shared publication
Al-Allaf, Mhf
2 / 5 shared
Weekes, Laurence
3 / 3 shared
Qaftan, O.
1 / 2 shared
Toma-Sabbagh, Tm
1 / 2 shared
Matooq, Ja
1 / 2 shared
Al Menhosh, Aa
1 / 2 shared
Dakhil, Aj
1 / 2 shared
Wang, Yu
1 / 16 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Al-Allaf, Mhf
  • Weekes, Laurence
  • Qaftan, O.
  • Toma-Sabbagh, Tm
  • Matooq, Ja
  • Al Menhosh, Aa
  • Dakhil, Aj
  • Wang, Yu
OrganizationsLocationPeople

article

Shear behaviour of lightweight concrete beams strengthened with CFRP composite

  • Al-Allaf, Mhf
  • Nelson, Levingshan Augusthus
  • Weekes, Laurence
Abstract

This paper presents the experimental results obtained from lightweight and normal concrete beams with closed and U-shaped configurations of epoxy bonded Carbon FRP (CFRP) reinforcement in order to compare the shear resisting mechanisms between lightweight and normal concrete beams. The experimental results show that the CFRP can successfully be applied in the strengthening of lightweight concrete beams and the shear strength gained due to CFRP reinforcement for lightweight samples is less than the normal weight concrete samples while the mode of failures are the same. In contrast, diagonal shear cracks propagate through the lightweight aggregate compared to cracks around normal aggregate in the concrete matrix. Furthermore, the numerical study shows that the design guidelines to estimate the CFRP contribution, which do not differentiate the concrete types, overestimate the U-shaped CFRP contribution on lightweight concrete beams where the effective bond length of CFRP could not be achieved due to lower tensile strength of lightweight concrete.

Topics
  • impedance spectroscopy
  • Carbon
  • laser emission spectroscopy
  • crack
  • strength
  • composite
  • tensile strength