People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pereira, Jm
École des Ponts ParisTech
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Effects of microstructure on THM behaviour of geomaterialscitations
- 2023Effect of supercritical carbonation on porous structure and mechanical strength of cementitious materials modified with bacterial nanocellulosecitations
- 2023Water retention curve of clayey sands determined from pore structure by using various methodscitations
- 2023Pore changes in an illitic clay during one-dimensional compressioncitations
- 2022Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storagecitations
- 2021Impact of an SRA (hexylene glycol) on irreversible drying shrinkage and pore solution properties of cement pastescitations
- 2020Contactless probing of polycrystalline methane hydrate at pore scale suggests weaker tensile properties than thoughtcitations
- 2020CO2 geological storage: Microstructure and mechanical behavior of cement modified with a biopolymer after carbonationcitations
- 2018Fabric characterisation in transitional soilscitations
- 2017Numerical study of one-dimensional compression of granular materials. II. Elastic moduli, stresses, and microstructure.citations
- 2017Poromechanics VI: Proceedings of the Sixth Biot Conference on Poromechanics
- 2017Investigation into macroscopic and microscopic behaviors of wet granular soils using discrete element method and X-ray computed tomography
- 2015Internal states, stress-strain behavior and elasticity in oedometrically compressed model granular materials
Places of action
Organizations | Location | People |
---|
article
Pore changes in an illitic clay during one-dimensional compression
Abstract
<jats:p> The pore size, shape and orientation of an illite-dominant clay were mapped during one-dimensional compression, using mercury intrusion porosimetry (MIP), scanning electron microscopy and gas adsorption. The total porosity was found to spread over the three International Union of Pure and Applied Chemistry classes of pores sizes: micropores (below 2 nm), mesopores (2–50 nm) and macropores (above 50 nm), and all three pore classes were observed during the compression. The clay structure is aggregated, with visible inter-aggregate pores (about 80% of the total porosity), and the remaining intra-aggregate pores of size approximately equal to the thickness of illite platelets (50–100 layers). During compression the largest pores first collapsed, followed by a progressive collapse, in an orderly manner, of smaller and smaller pores. MIP data suggest that the macroscopic deformation mainly translates at the pore scale into changes of inter-aggregate porosity, while intra-aggregate pores spread over the micro- to mesopore size range. Gas adsorption tests show that the volume of intra-aggregate pores decreases with loading, probably due to rearrangement of particles composing the aggregates, while the specific surface area reduces. Examination of the pores’ orientation on both vertical and horizontal planes confirms a preferential orientation of pores normal to the loading direction, with a gradual flattening of the pores. </jats:p>