People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibraim, Erdin
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024An evaluation of non-linear undrained behaviour in the moderate strain range for fine-grained soilscitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soils:A reviewcitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soilscitations
- 2021Stiffness of granular soils under long-term multiaxial cyclic loadingcitations
- 20213D FE-informed laboratory soil testing for the design of offshore wind turbine monopilescitations
- 2021Stiffness of artificially cemented sands:insight on characterisation through empirical power relationshipscitations
- 2021Stiffness of artificially cemented sandscitations
- 2019Strength anisotropy of fibre-reinforced sands under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2018Compacted Chalk Putty-Cement Blends:Mechanical Properties and Performancecitations
- 2018Compacted Chalk Putty-Cement Blendscitations
- 2017General Report:
- 2017Particle soil crushing: passive detection and interpretation
- 2017Evolution of elastic properties of granular soils under very large of number of multiaxial stress cycles
- 2016Evolution of small strain stiffness of granular soils with a large number of small loading cycles in the 3-D multiaxial stress space
- 2015Quantitative assessment of the influence of surface roughness on soil stiffnesscitations
- 2014Micromechanics of seismic wave propagation in granular materialscitations
- 2013Experimental and numerical assessment of a cubical sample produced by pluviationcitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial, spherical sized particles for DEM validation studies ; Characterization of artificial spherical particles for DEM validation studiescitations
- 2010Static liquefaction of fibre reinforced sand under monotonic loadingcitations
- 2009Failure resistant soils for geotechnical infrastructure
Places of action
Organizations | Location | People |
---|
article
Stiffness of granular soils under long-term multiaxial cyclic loading
Abstract
Geotechnical infrastructures may be subjected over their lifetime to long-term loading cycles of varying amplitude, frequencies and direction as a result of the combination of environmental and operational processes. Soil elements surrounding the foundations of these geotechnical systems are in turn subjected to complex six-dimensional stress paths, invariably involving rotation of principal stress axes. Changes of the soil's mechanical properties can lead to changes of the overall structure dynamics as well as to an accumulation of irreversible deformations. However, the evolution of the soil's response and stiffness under complex long-term cyclic loading scenarios is neither well known nor adequately understood. In contrast to the conditions imposed by standard laboratory tests, this research used a Hollow Cylinder Torsional Apparatus (HCTA) to explore the evolution of the small-strain stiffness of a granular soil under long-term multiaxial drained stress cycles (up to about 6x105). Granular soil samples were subjected to stages of regular low amplitude stress cycles at different anisotropic stress levelsinterspersed by periodic large amplitude cyclic loops. A high resolution local strain measurement system was employed to determine the vertical Young's modulus and shear modulus, both attained in a HCTA at different stages of the testing. It was found that low amplitude multiaxial stress cycles, involving continuous rotation of principal stress axes,caused a degradation up to about 20% of these elastic soil properties. Within 105 to 2x105cycles, the degraded stiffnesses reached a stable value which was maintained up to at least 8x105cycles. The stiffness degradation was more pronounced for the shear modulus rather than the vertical Young's modulus of the soil.