People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oloughlin, Conleth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024QUANTIFY THE PERFORMANCE OF SUCTION CAISSONS FOR THE EXTENSION OF WIND TURBINE NO. 1
- 2023Centrifuge tests to assess capacity performance of suction caissons without lids
- 2023Centrifuge modelling to quantify the performance of suction caissons for the Hong Kong Offshore Wind Farm project - test specification
- 2022Residual strength based on CPT sleeve friction and a constant volume ring shear device
- 2016Estimation of soil strength in fine-grained soils by instrumented free-fall sphere testscitations
Places of action
Organizations | Location | People |
---|
article
Estimation of soil strength in fine-grained soils by instrumented free-fall sphere tests
Abstract
<p>The dynamic response of a sphere in soft clay is considered through field tests in which a 0·25 m dia. steel sphere was allowed to free-fall in water and dynamically penetrate the underlying soft soil. The test data, collected in a lake and a sea environment, relate to sphere velocities of up to 8 m/s, reaching sphere invert embedments close to ten diameters. An inertial measurement unit located within the sphere measured the motion response of the sphere during free-fall and penetration in soil. The resulting acceleration data were used within a simple framework that accounts for both geotechnical shearing resistance and fluid mechanics drag resistance, but cast in terms of a single capacity factor that can be expressed in terms of the non-Newtonian Reynolds number. The merit of the framework is demonstrated by using it as a forward model in a series of inverse analyses that calculate the undrained shear strength profile from acceleration data measured in free-fall sphere tests. The good match between these profiles and those obtained from ‘push-in’ piezoball penetrometer tests points to the potential for an instrumented free-fall sphere to be used as a tool for characterising the near-surface strength of soft seabeds.</p>