Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Queiroz, Ângela Custódia Guimarães

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Structure evaluation of a tropical residual soil under wide range of compaction conditions1citations

Places of action

Chart of shared publication
Kühn, Vinícius De Oliveira
1 / 3 shared
Caicedo, Bernardo
1 / 6 shared
Lopes, Bruna
1 / 3 shared
Cordão-Neto, Manoel Porfirio
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Kühn, Vinícius De Oliveira
  • Caicedo, Bernardo
  • Lopes, Bruna
  • Cordão-Neto, Manoel Porfirio
OrganizationsLocationPeople

article

Structure evaluation of a tropical residual soil under wide range of compaction conditions

  • Kühn, Vinícius De Oliveira
  • Caicedo, Bernardo
  • Queiroz, Ângela Custódia Guimarães
  • Lopes, Bruna
  • Cordão-Neto, Manoel Porfirio
Abstract

<p>Soil compaction is one of the most common techniques used to engineer the soil. It is especially appealing to developing countries for its cost-effective and sustainable attributes for improving the soil's geotechnical characteristics. The compaction process along with the complexity of residual soils, abundant in the tropics zone, can have an impact on the performance of geotechnical structures built with these soils. Therefore, it is important to understand the influence that certain compaction conditions have on the structure of these materials. To investigate that, mercury intrusion porosimetry tests were performed on compacted samples of a tropical residual soil from Brazil under different conditions of water content and compactive effort. Results show that the compacted soil under all studied conditions presents a bimodal pore-size distribution (PSD). It appears that the low availability of water within the macro-pores, hence suction, could have played a decisive role in maintaining the bimodal framework of the PSD. In this respect, this study contributes to a better understanding of the tropical residual soils' structure when subjected to different compaction conditions, thus providing means to improve field applications.</p>

Topics
  • impedance spectroscopy
  • pore
  • porosimetry
  • Mercury