Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Anupinder

  • Google
  • 2
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Effect of a magnetic field on the dielectric properties of PLT–BNCFO composites1citations
  • 2023Establishment of magneto-dielectric effect and magneto-resistance in composite of PLT and Ba-based <i>U</i>-type hexaferrite4citations

Places of action

Chart of shared publication
Arora, Vishal
2 / 2 shared
Aggarwal, Kanika
1 / 1 shared
Mahajan, Nitin
1 / 1 shared
Sharma, Indu
2 / 2 shared
Arora, Mehak
1 / 1 shared
Mahajan, Shruti
1 / 1 shared
Kaur, Shubhpreet
1 / 2 shared
Kumar, Rakesh
1 / 22 shared
Sharma, Madan
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Arora, Vishal
  • Aggarwal, Kanika
  • Mahajan, Nitin
  • Sharma, Indu
  • Arora, Mehak
  • Mahajan, Shruti
  • Kaur, Shubhpreet
  • Kumar, Rakesh
  • Sharma, Madan
OrganizationsLocationPeople

article

Effect of a magnetic field on the dielectric properties of PLT–BNCFO composites

  • Singh, Anupinder
  • Arora, Vishal
  • Aggarwal, Kanika
  • Mahajan, Nitin
  • Sharma, Indu
  • Arora, Mehak
  • Mahajan, Shruti
Abstract

<jats:p> The main goal of this study is to analyze the magnetic, dielectric and magneto-dielectric characteristics of Pb<jats:sub>1−</jats:sub> <jats:sub> x </jats:sub>La<jats:sub> x </jats:sub>Ti<jats:sub>1−</jats:sub> <jats:sub> x </jats:sub>O<jats:sub>3</jats:sub> (PLT)–(Ba<jats:sub>1−3</jats:sub> <jats:sub> x </jats:sub>Nd<jats:sub>2</jats:sub> <jats:sub> x </jats:sub>)<jats:sub>4</jats:sub>Co<jats:sub>2</jats:sub>Fe<jats:sub>36</jats:sub>O<jats:sub>60</jats:sub> (BNCFO) (where x = 0.25) composite materials T1–T3 sintered at various temperatures (1100, 1200 and 1300°C, respectively). An X-ray diffraction investigation was performed in order to pinpoint the creation of a U-type hexaferrite phase. Scanning electron microscopy micrographs reveal that sample T2 reached the maximum value of grain size and the largest experimental density value of 6.14 g/cm<jats:sup>3</jats:sup> due to the intensified grain growth of the composite material. The magnetic investigations further indicate that sample T2 achieved the highest remnant magnetization, measuring 1.550 emu/g, revealing the suitability of the sintering temperature. The magneto-dielectric investigations demonstrate the presence of multiferroicity in all samples and show that sample T2 exhibits the highest magneto-dielectric response of 41.99 at 1.2 T and a magneto-dielectric coefficient (γ) of around 0.7609 g<jats:sup>2</jats:sup>/emu<jats:sup>2</jats:sup>. Numerous metrics, including Nyquist plots, impedance, electrical modulus, dielectric constant and conductivity, were carefully examined in order to determine the electrical properties of the proposed sample. It was found that sample T2 produced enhanced results and had the right temperature for the substance to develop. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • grain
  • grain size
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • dielectric constant
  • composite
  • magnetization
  • sintering
  • grain growth