Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmadi, Ehsan

  • Google
  • 4
  • 3
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Seismic performance of resilient self-centering bridge piers equipped with SMA bars1citations
  • 2023Modelling nonlinear dynamic behaviour of rocking bridge piers with shape memory alloys: Modelling nonlinear dynamic behaviour of rocking bridge piers with shape memory alloys5citations
  • 2023Modelling nonlinear dynamic behaviour of rocking bridge piers with shape memory alloys5citations
  • 2022Seismic Performance of Precast Post-Tensioned Segmental Bridge Piers with Shape Memory Alloy (SMA) Barscitations

Places of action

Chart of shared publication
Kocakaplan, Sedef
4 / 4 shared
Kashani, Mohammad Mehdi
3 / 17 shared
Kashani, Mohammad
1 / 6 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Kocakaplan, Sedef
  • Kashani, Mohammad Mehdi
  • Kashani, Mohammad
OrganizationsLocationPeople

article

Seismic performance of resilient self-centering bridge piers equipped with SMA bars

  • Ahmadi, Ehsan
  • Kocakaplan, Sedef
  • Kashani, Mohammad Mehdi
Abstract

This study examines the seismic behavior of precast post-tensioned segmental (PPS) bridge piers that are equipped with Shape Memory Alloy (SMA) bars. PPS piers are designed to minimize overall and localized damage to bridges by incorporating natural hinges and rocking mechanisms. The introduction of super-elastic SMA bars has the potential to enhance the use of PPS piers in high-seismic regions. A parametric study is conducted to identify piers with the highest energy dissipation capacity, which are then subjected to dynamic analysis. The aim is to assess the energy dissipation capability of these systems by subjecting the selected piers, both with and without SMA bars, to far-field ground motions using a Finite Element (FE) framework. The seismic performance of the piers is evaluated using Incremental Dynamic Analysis (IDA) curves, which are obtained from analyzing the piers under 44 far-fault ground motions. The IDA results indicate a significant reduction in the drift responses of the piers when SMA bars are utilized.

Topics
  • impedance spectroscopy