Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sardar, Iqra

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Bioactivity-guided nanoparticle synthesis from <i>Zingiber officinale</i> and <i>Mentha longifolia</i>3citations

Places of action

Chart of shared publication
Ashraf, Rizwan
1 / 2 shared
Sarfraz, Raja Adil
1 / 1 shared
Bedi, Saira
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Ashraf, Rizwan
  • Sarfraz, Raja Adil
  • Bedi, Saira
OrganizationsLocationPeople

article

Bioactivity-guided nanoparticle synthesis from <i>Zingiber officinale</i> and <i>Mentha longifolia</i>

  • Ashraf, Rizwan
  • Sarfraz, Raja Adil
  • Sardar, Iqra
  • Bedi, Saira
Abstract

<jats:p> To date, various reports have exhibited the antidiabetic activity of plant extracts, but this activity could be improved through the conversion of plant bioactives into metal nanoparticles. Aqueous plant extracts were prepared from two plants, Zingiber officinale and Mentha longifolia. Silver nanoparticles from aqueous plant extracts were synthesized and characterized through spectroscopic techniques, including ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy and scanning electron microscopy, in comparison with their respective plant extracts. After successful synthesis, these nanoparticles were evaluated for biological potentials of antioxidant, antimicrobial and antidiabetic activities. The nanoparticles of both plants offered outstanding antidiabetic potential, but the silver nanoparticles of Z. officinale showed the highest inhibition potential of 80.52% to α-amylase even at lower concentrations. The synthesized nanoparticles were found to be better antimicrobial agents against Bacillus subtilis and Escherichia coli as measured through a well diffusion assay as compared with aqueous extracts. These nanoparticles offered antioxidant potential that was better than that of their plant extracts but was slightly lower than that of the positive control gallic acid. This study gives a direction for improvement of the biological activity of plant-based medicine through green synthesis of silver nanoparticles. </jats:p>

Topics
  • nanoparticle
  • silver
  • scanning electron microscopy
  • Fourier transform infrared spectroscopy
  • Ultraviolet–visible spectroscopy
  • bioactivity