Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hope, Thomas

  • Google
  • 2
  • 8
  • 4

Wellcome Centre for Human Neuroimaging

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Dissociating cerebellar regions involved in formulating and articulating words and sentences1citations
  • 2022Influence of wet storage on fly ash reactivity and processing for use in concrete3citations

Places of action

Chart of shared publication
Green, David
1 / 1 shared
Oberhuber, Marion
1 / 1 shared
Prejawa, Susan
1 / 1 shared
Price, Catherine
1 / 1 shared
Geva, Sharon
1 / 1 shared
Parker Jones, Oiwi
1 / 1 shared
Mccarthy, Michael John
1 / 15 shared
Csetényi, L. J.
1 / 24 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Green, David
  • Oberhuber, Marion
  • Prejawa, Susan
  • Price, Catherine
  • Geva, Sharon
  • Parker Jones, Oiwi
  • Mccarthy, Michael John
  • Csetényi, L. J.
OrganizationsLocationPeople

article

Influence of wet storage on fly ash reactivity and processing for use in concrete

  • Hope, Thomas
  • Mccarthy, Michael John
  • Csetényi, L. J.
Abstract

<p>Wet stored fly ash is increasingly being considered as a cement component in concrete. However, the effect of these conditions on the material's reactivity is uncertain. The research described here investigated this property for wet laboratory-stored (10% moisture) and site stockpile fly ashes, using lime consumption (BS EN 196-5, Frattini) and activity index (BS EN 450-1) tests. Progressive reactivity losses occurred with laboratory storage up to 730 days. This was influenced by dry fly ash fineness and holding period, suggesting that the formation of agglomerates/products (assessed by scanning electron microscopy) affects lime's access to particle surfaces, with similar type behaviour for stockpile materials. Compressive (cube) strength reductions were also found between dry and wet stored fly ash concretes. Stockpile fly ash reactivity following laboratory- (drying/ball milling) and pilot-scale (flash drying/de-agglomerating, air classifying, micronising and carbon removal) processing was then investigated. Exposure of reactive material using these methods appears to be important, with greater improvements generally noted as the fly ash particle size is reduced and at later test ages. To meet activity index requirements, fly ash sub-10 μm contents, with the Portland cement used, needed to exceed about 30%, irrespective of the storage conditions/processing used. Minor benefits to concrete strength were obtained with increasing sub-10 μm contents, particularly beyond 28 days.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • scanning electron microscopy
  • milling
  • strength
  • cement
  • ball milling
  • ball milling
  • drying
  • lime