People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calabria-Holley, Juliana
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2021Investigation of the variability in the components of natural plant fibres subjected to hornification cycles
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Autogenous self-healing of fibre cements
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2019ICE Themes Low Carbon Concrete
- 2018Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretes
- 2018Concretes incorporating recycled geopolymer aggregate - Implications and properties correlations
- 2018Chemical aspects related to using recycled geopolymers as aggregatescitations
- 2018Modification of hemp shiv properties using water-repellent sol–gel coatingscitations
- 2018Modification of Hemp Shiv Properties using Water-repellent Sol-gel Coatingscitations
- 2016The effects of sol-gel silicates on hydration kinetics and microstructure of Portland cement systems
- 2015Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systemscitations
- 2015Effect of nanolimestone particles on hydration and flexural strength of Portland limestone cement pastes
- 2015Sol-Gel Technology as a Seeding Agent for Portland Cement Systems
- 2015A comprehensive review of the models on the nanostructure of calcium silicate hydratescitations
- 2014The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
- 2014Прочность и микроструктура цементного камня c добавками коллоидного SiO2
Places of action
Organizations | Location | People |
---|
article
Chemical aspects related to using recycled geopolymers as aggregates
Abstract
Despite extensive research into sustainability of geopolymers, end-of-life aspects have been largely overlooked. A recycling scenario is examined in this study. This requires an investigation of alkali leaching potential from a geopolymeric matrix. To study the feasibility of geopolymer cement (GPC) recycling, the migration of alkalis was evaluated for the first time on a microstructural level through energy dispersive X-ray (EDX) scanning electron microscopy (SEM) elemental mapping and leaching tests. Macroscale impacts were assessed through an investigation of Portland cement (PC) mortar properties affected by alkali concentration. Leaching tests indicated that alkalis immediately become available in aqueous environments, but the majority remain chemically or physically bound in the matrix. This type of leaching accelerates the initial setting of PC paste. Elemental mapping and EDX/SEM analysis showed a complex paste-aggregate interfacial transition zone. Exchange of calcium and sodium, revealed by the maps, resulted in the migration of sodium into the PC paste and the formation of additional calcium-silicon-based phases in the geopolymeric matrix. Strength values of mortars with 25% and 50% recycled aggregates (RA) showed negligible differences compared with the reference sample. Screening tests indicated a low potential for GPC RA inducing alkali-silica reaction. Transport of GPC RA alkalis and the underlying mechanisms were observed. This transport phenomenon was found to have minor effects on the properties of the PC mortar, indicating that recycling of geopolymers is a viable reuse practice.