Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gaudin, Christophe

  • Google
  • 5
  • 9
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Measurements of long-term strength changes due to cyclic loading in Gulf of Mexico claycitations
  • 2021Centrifuge modelling of pipe-soil interaction in clay with crust layer10citations
  • 2020Effect of water entrainment on seabed soils during cyclic pipe-soil interactioncitations
  • 2018Investigation of an OFDR Fibre Braggs System for use in geotechnical scale modelling5citations
  • 2014Interpreting T-bar tests in ultra-soft clay18citations

Places of action

Chart of shared publication
Sahdi, Fauzan
3 / 4 shared
Laham, N.
1 / 1 shared
Watson, Phillip
2 / 4 shared
Jr, Joe Tom
2 / 2 shared
Randolph, Mark
1 / 10 shared
Hou, Zhechen
1 / 1 shared
Cassidy, Mark
1 / 29 shared
Sahdi, F.
1 / 1 shared
Boylan, N. P.
1 / 1 shared
Chart of publication period
2021
2020
2018
2014

Co-Authors (by relevance)

  • Sahdi, Fauzan
  • Laham, N.
  • Watson, Phillip
  • Jr, Joe Tom
  • Randolph, Mark
  • Hou, Zhechen
  • Cassidy, Mark
  • Sahdi, F.
  • Boylan, N. P.
OrganizationsLocationPeople

article

Interpreting T-bar tests in ultra-soft clay

  • Gaudin, Christophe
  • Sahdi, F.
  • Boylan, N. P.
Abstract

This technical note describes a simple methodology for reliably measuring the undrained strength of ultra-soft consolidating clay in the geotechnical centrifuge, using the T-bar penetrometer. This methodology relies on the T-bar resistance force owing to soil strength being equal, albeit in the opposite direction, during penetration and extraction when the soil is fully remoulded. The other components of resistance from soil buoyancy, bar self-weight and soil lateral pressure on the T-bar axial strain gauge act in the same direction regardless of the direction of bar movement. The method uses cycles of penetration and extraction to determine the correction required to eliminate these effects. The methodology was validated by comparing the strength inferred from 81 T-bar penetrometer tests with a large strain numerical simulation of consolidation and the resulting gain in soil strength.

Topics
  • impedance spectroscopy
  • simulation
  • extraction
  • strength