People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibraim, Erdin
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024An evaluation of non-linear undrained behaviour in the moderate strain range for fine-grained soilscitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soils:A reviewcitations
- 2024Comparison of simple stress-strain models in the moderate strain range for fine-grained soilscitations
- 2021Stiffness of granular soils under long-term multiaxial cyclic loadingcitations
- 20213D FE-informed laboratory soil testing for the design of offshore wind turbine monopilescitations
- 2021Stiffness of artificially cemented sands:insight on characterisation through empirical power relationshipscitations
- 2021Stiffness of artificially cemented sandscitations
- 2019Strength anisotropy of fibre-reinforced sands under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2018Compacted Chalk Putty-Cement Blends:Mechanical Properties and Performancecitations
- 2018Compacted Chalk Putty-Cement Blendscitations
- 2017General Report:
- 2017Particle soil crushing: passive detection and interpretation
- 2017Evolution of elastic properties of granular soils under very large of number of multiaxial stress cycles
- 2016Evolution of small strain stiffness of granular soils with a large number of small loading cycles in the 3-D multiaxial stress space
- 2015Quantitative assessment of the influence of surface roughness on soil stiffnesscitations
- 2014Micromechanics of seismic wave propagation in granular materialscitations
- 2013Experimental and numerical assessment of a cubical sample produced by pluviationcitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial spherical particles for DEM validation studiescitations
- 2012Characterization of artificial, spherical sized particles for DEM validation studies ; Characterization of artificial spherical particles for DEM validation studiescitations
- 2010Static liquefaction of fibre reinforced sand under monotonic loadingcitations
- 2009Failure resistant soils for geotechnical infrastructure
Places of action
Organizations | Location | People |
---|
article
Quantitative assessment of the influence of surface roughness on soil stiffness
Abstract
The nature of soil stiffness at small strains remains poorly understood. The relationship between soil stiffness (e.g. shear stiffness, G<sub>0</sub>) and isotropic confining pressure (p′) can be described using a power function with exponent (b), that is, G<sub>0</sub> = A (p′/p r)<sup>b</sup> , where A is a constant and p r is an arbitrary reference pressure. Experimentally determined values of b are usually around 0·5 and these are higher than the value of 0·33 that can be analytically determined using Hertzian theory. Hertzian theory considers contact between two smooth, elastic spheres; however, in reality, inter-particle contacts in soil are complex with particle shape and surface roughness affecting the interaction. Thus Hertzian theory is not directly applicable to predict real soil stiffness. It has, however, provided a useful basis to develop an analytical framework to consider the influence of particle surface roughness on small-strain soil stiffness. Here, earlier contributions using this framework are extended and improved by paying particular attention to roughness and the tangential contact stiffness. Stiffness values calculated using the newly derived analytical expressions were compared with the results of bender element tests on samples of borosilicate glass beads (ballotini) whose surface roughness was quantified using an optical interferometer. The analytical expression captures the experimentally observed sensitivity of the small-strain shear modulus to surface roughness.