Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morton, J. P.

  • Google
  • 3
  • 3
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Estimation of soil strength in fine-grained soils by instrumented free-fall sphere tests23citations
  • 2014Strength assessment during shallow penetration of a sphere in clay33citations
  • 2014Strength assessment during shallow penetration of a sphere in clay33citations

Places of action

Chart of shared publication
Oloughlin, Conleth
1 / 5 shared
Oloughlin, C. D.
2 / 3 shared
White, D. J.
1 / 2 shared
Chart of publication period
2016
2014

Co-Authors (by relevance)

  • Oloughlin, Conleth
  • Oloughlin, C. D.
  • White, D. J.
OrganizationsLocationPeople

article

Strength assessment during shallow penetration of a sphere in clay

  • Oloughlin, C. D.
  • Morton, J. P.
Abstract

<p>Strength interpretation from the measured penetration resistance of full-flow penetrometers, such as the T-bar and ball, is generally based on a constant bearing capacity factor associated with a deep flow-round mechanism. This approach may underestimate the strength of near-surface sediments, which is becoming increasingly important for the design of offshore infrastructure such as pipelines, steel catenary risers and mudmats. This paper describes a series of centrifuge experiments designed to capture the change in the capacity factor of a ball penetrometer during shallow penetration. A rigorous consideration of soil buoyancy is provided. This is an important consideration in soils with a higher strength to self-weight ratio because a cavity is formed by the passage of the ball and remains open to greater depths. The depth at which a full-flow mechanism develops is related to the dimensionless strength ratio, expressed as the ratio of the undrained shear strength to the effective unit weight and penetrometer diameter. This observation forms the basis for proposed formulations that describe the evolution of the bearing capacity factor with depth for different dimensionless strength ratios. These formulations can be used to determine more accurately the undrained shear strength of near-surface soil over the range of dimensionless strength ratios that is of interest to offshore applications.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • strength
  • steel