People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taylor, Susan
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Experimental and numerical investigation of compressive membrane action in GFRP-reinforced concrete slabscitations
- 2023Characterisation of hemp shiv and its effect on the compressive strength of hemp concretecitations
- 2022Effect of the Treatments of the Surface on Mechanical Performance of Concrete Containing Chemical Admixtures
- 2022Factorial design modelling of cement grout containing dolomitic quarry dust powdercitations
- 2022Assessment of the influence of the type of filler materials on the properties of cement groutscitations
- 2020Experimental Investigation of Strain Sensitivity for Surface Bonded Fibre Optic Sensorscitations
- 2019Recycling ceramic waste powder: effects its grain-size distribution on fresh and hardened properties of cement pastes/mortars formulated from SCC mixescitations
- 2017The influence of arching action on BFRP reinforced SCC deck slabs in Thompson bridge
- 2016Experimental Study of Interfacial Stress Distribution of Bonded-in BFRP Rod Glulam Joints Using Fibre Optic Sensors (FOS)citations
- 2016Glued-in basalt frp rods as moment connections in box section frames
- 2016Effect of waste ceramic powder on strength development characteristics of cement based mortars
- 2015Nový přístup k určení optimální dávky superplatifikátorůa jejich kompatibility s cementovými materiály
- 2015Post-tensioning glulam timber beams with basalt FRP tendonscitations
- 2014POST-TENSIONING OF TIMBER BEAMS WITH BASALT FIBRE REINFORCED POLYMER
- 2014Influence of embedded length on strength of BFRP rods bonded parallel to the grain in low grade timber by pullout-bending tests
- 2014Post-tensioning of glulam timber with steel tendonscitations
- 2014Development of Novel Post-Tensioned Glulam Timber Composites
- 2014Compability of Superplasticizers with Cementitious Materials
- 2012Influence of the type of coarse lightweight aggregate on properties of Semi-Lightweight Self-Consolidating Concretecitations
- 2009Monitoring of Corrosion in Structural Reinforcing Bars: performance comparison using in-situ fibre optic and electric wire strain gauge systemscitations
- 2009In situ cross-calibration of in-fibre Bragg Grating and Electrical Resistance Strain Gauges for structural monitoring using an extensometercitations
Places of action
Organizations | Location | People |
---|
article
Post-tensioning glulam timber beams with basalt FRP tendons
Abstract
Improvements in the structural performance of glulam timber beams by the inclusion of reinforcing materials can increase both the service performance and ultimate capacity. This paper describes a series of four-point bending tests conducted, under service loads and to failure, on unreinforced, reinforced and post-tensioned glulam timber beams, where the reinforcing tendon used is 12 mm dia. basalt fibre-reinforced polymer. The research is designed to evaluate the benefits offered by including an active reinforcement in contrast to the passive reinforcement typically used within timber strengthening works, in addition to establishing the effect that bonding the reinforcing tendon has on the material's performance. Further experimental tests have also been developed to investigate the long-term implications of this research, with emphasis placed upon creep and loss of post-tensioning; however, this is ongoing and is not presented in this paper. The laboratory investigations establish that the flexural strength and stiffness increase for both the unbonded and bonded post-tensioned timbers compared to the unreinforced and reinforced beams. Timber that is post-tensioned with an unbonded basalt fibre-reinforced polymer tendon shows a flexural strength increase of 2ṡ8% and an increase in stiffness of 8ṡ7%. Post-tensioned beams with a bonded basalt fibre-reinforced polymer tendon show increases in flexural strength and stiffness of 15ṡ4% and 11ṡ5% respectively.