People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kinuthia, John
University of South Wales
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Derivation and Internal Validation of a Risk Score for Predicting Chlamydia trachomatis Infection in Kenyan Women Planning Conception
- 2023Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solutioncitations
- 2022Opportunities and Challenges to Emergency Department-Based HIV Testing Services and Self-Testing Programs: A Qualitative Study of Healthcare Providers and Patients in Kenyacitations
- 2022The cost of implementing the Systems Analysis and Improvement Approach for a cluster randomized trial integrating HIV testing into family planning services in Mombasa County, Kenyacitations
- 2022Effects of Lysinibacillus sphaericus on Physicomechanical and Chemical Performance of OPC Blended with Natural Tuff and Pulverized Fly Ash
- 2021Influences on Early Discontinuation and Persistence of Daily Oral PrEP Use Among Kenyan Adolescent Girls and Young Women: A Qualitative Evaluation From a PrEP Implementation Programcitations
- 2016Strength and environmental evaluation of stabilised Clay-PFA eco-friendly brickscitations
- 2016Unfired clay materials and constructioncitations
- 2016Engineering Properties of Concrete made with Brick Dust Waste
- 2015Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
- 2015Development of stabilised brick and mortar using biomass wastecitations
- 2015The Use of Palm Kernel Shell and Ash for Concrete Production
- 2012Stabilised unfired clay bricks for environmental and sustainable usecitations
- 2012Designed non-fired clay mixes for sustainable and low carbon usecitations
- 2010Freeze-thaw of stabilised clay brickcitations
- 2010Unfired clay masonry bricks incorporating slate wastecitations
- 2010Design thermal values for unfired clay brickscitations
- 2010Engineering properties of concrete made with slate wastecitations
- 2010Sustainable masonry mortar for brick joint and plaster in the UKcitations
- 2009Engineering properties of unfired clay masonry brickscitations
- 2009Compressive strength and microstructural analysis of unfired clay masonry brickscitations
- 2009Unfired clay bricks: from laboratory to industrial productioncitations
- 2008Using Slag for Unfired-Clay Masonry-Brickscitations
- 2008Innovative Building Materials: Manufactured Bricks Using By-products of an Industrial Process
- 2008Developing unfired stabilised building materials in the UKcitations
Places of action
Organizations | Location | People |
---|
article
Development of stabilised brick and mortar using biomass waste
Abstract
This paper reports the potential of using cereal ash and bottom ash waste generated from biomass combustion plants for the manufacture of stabilised bricks and sustainable masonry mortar for brick joints and plaster. For the stabilised brick production, the cereal ash waste and bottom ash waste were used as full substitutes for primary clay, while magnesium oxide ash was used as a partial substitute for conventional stabilisers. The blending for the production of the masonry mortar was accomplished by the partial replacement of Portland cement, quicklime or hydraulic lime with large volumes (up to 70%) of cereal ash waste. The properties investigated under this study include material characterisation and compressive strength and durability using freeze–thaw tests. The results obtained suggest that there is potential for the manufacture of sustainable construction materials such as bricks and mortar from cereal ash, bottom ash and magnesium oxide ash waste streams