People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heath, Andrew
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2023Insights into the piezoceramic electromechanical impedance response for monitoring cement mortars during water saturation curingcitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious composites:Healing evaluation of early and later-age crackscitations
- 2022Effect of fibre loading on the microstructural, electrical, and mechanical properties of carbon fibre incorporated smart cement-based compositescitations
- 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious compositescitations
- 2020Compressive Strength of Novel Alkali-Activated Stabilized Earth Materials Incorporating Solid Wastescitations
- 2018Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretes
- 2018Concretes incorporating recycled geopolymer aggregate - Implications and properties correlations
- 2018Chemical aspects related to using recycled geopolymers as aggregatescitations
- 2017Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formationcitations
- 2016Investigation of the Recycling of Geopolymer Cement wastes as Fine Aggregates in Mortar Mixes
- 2016Chemical aspects related to using recycled geopolymers as an aggregate
- 2016Recycling of fly ash-slag Geopolymer binder in mortar mixes
- 2015The environmental credentials of hydraulic lime-pozzolan concretescitations
- 2015Structural and durability properties of hydraulic lime-pozzolan concretescitations
- 2015The environmental credentials of lime-pozzolan concretescitations
- 2014Numerical analysis of triplet shear test on brickwork masonrycitations
- 2013Laboratory scale testing of extruded earth masonry unitscitations
- 2013The potential for using geopolymer concrete in the UKcitations
- 2012The feasibility and potential of modern hydraulic lime concretes
- 2012Drystone retaining walls: ductile engineering structures with tensile strengthcitations
- 2009The compressive strength of modern earth masonry
- 2009The compressive strength of modern earth masonry
- 2009Compressive strength of extruded unfired clay masonry unitscitations
- 2001Quantifying Longitudinal, Corner and Transverse Cracking in Jointed Concrete Pavements
- 2000Top-down cracking of rigid pavements constructed with fast-setting hydraulic cement concrete
Places of action
Organizations | Location | People |
---|
article
The potential for using geopolymer concrete in the UK
Abstract
Geopolymers are a novel class of inorganic polymers, which have the potential to replace Portland cement in a number of different applications. Geopolymers can utilise a higher level of industrial by-products than Portland cement blends and numerous studies have concluded geopolymer concretes have significantly lower embodied carbon dioxide than Portland-cement-based concretes. This paper examines the potential for the use of geopolymer binders as a Portland cement replacement in the UK. The quantities of material required, the major sources of these materials, the environmental implications and the barriers to implementation are discussed.