People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Berndtsson, Ronny
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Production of Graphene Membranes from Rice Husk Biomass Waste for Improved Desalinationcitations
- 2022Evaluation of modified Hilhorst models for pore electrical conductivity estimation using a low‑cost dielectric sensorcitations
- 2019Laboratory calibration and field validation of soil water content and salinity measurements using the 5TE sensorcitations
- 2008Soil water content and salinity determination using different dielectric methods in saline gypsiferous soilcitations
Places of action
Organizations | Location | People |
---|
article
Soil water content and salinity determination using different dielectric methods in saline gypsiferous soil
Abstract
in Undetermined<br/>Measurements of dielectric permittivity and electrical conductivity were taken in a saline gypsiferous soil collected from southern Tunisia. Both time domain reflectometry (TDR) and the new WET sensor based on frequency domain reflectometry (FDR) were used. Seven different moistening solutions were used with electrical conductivities of 0.0053-14 dS m(-1). Different models for describing the observed relationships between dielectric permittivity (K-a) and water content (theta), and bulk electrical conductivity (ECa) and pore water electrical conductivity (ECp) were tested and evaluated. The commonly used K-a-theta models by Topp et al. (1980) and Ledieu et al. (1986) cannot be recommended for the WET sensor. With these models, the RMSE and the mean relative error of the predicted theta were about 0.04 m(3) m(-3) and 19% for TDR and 0.08 m(3) m(-3) and 54% for WET sensor measurements, respectively. Using the Hilhorst (2000) model for ECp predictions, the RMSE was 1.16 dS m(-1) and 4.15 dS m(-1) using TDR and the WET sensor, respectively. The WET sensor could give similar accuracy to TDR if calibrated values of the soil parameter were used instead of standard values.