Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tam, Joo Xian

  • Google
  • 1
  • 6
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Reactivation of hydrated cement powder by thermal treatment for partial replacement of ordinary portland cement14citations

Places of action

Chart of shared publication
Semugaza, Gustave
1 / 1 shared
Gierth, Anne Zora
1 / 1 shared
Nawrath, Stefan
1 / 1 shared
Castillo, Marianela Escobar
1 / 2 shared
Lupascu, Doru C.
1 / 11 shared
Mielke, Tommy
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Semugaza, Gustave
  • Gierth, Anne Zora
  • Nawrath, Stefan
  • Castillo, Marianela Escobar
  • Lupascu, Doru C.
  • Mielke, Tommy
OrganizationsLocationPeople

article

Reactivation of hydrated cement powder by thermal treatment for partial replacement of ordinary portland cement

  • Semugaza, Gustave
  • Tam, Joo Xian
  • Gierth, Anne Zora
  • Nawrath, Stefan
  • Castillo, Marianela Escobar
  • Lupascu, Doru C.
  • Mielke, Tommy
Abstract

<jats:title>Abstract</jats:title><jats:p>Cement is the strength-forming component of concrete. It has been a major building material for more than a century. However, its production is accountable for a considerable percentage of global CO<jats:sub>2</jats:sub> emissions and is very energy-intensive. The Ordinary Portland Cement (OPC) production is a thermal process at around 1450 °C. This study shows that the reactivation of Hydrated Cement Powder (HCP) can be successful at a much lower temperature. Therefore, the possibility of using HCP to replace parts of OPC in concrete reduces the energy consumption and the CO<jats:sub>2</jats:sub> emissions associated with OPC production. HCP, which may ultimately stem from recycled concrete, needs treatment to produce new concrete of the required mechanical strength. Using reactivated HCP in concrete, an optimum strength is achieved by heating the HCP in the range of 400–800 °C. Among other factors, the type of cement used influences the optimum heating temperature and attainable strength. This paper shows that 600 °C is an optimum heating temperature using the OPC type CEM I 52.5R. The crystalline phase transitions resulting from the thermal treatment were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetry (TG). The heat released during hydration was investigated, and scanning electron microscopy (SEM) displays the microstructure evolution. OPC can be partially replaced by thermally treated HCP in mortar, attaining similar mechanical strength values.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • scanning electron microscopy
  • x-ray diffraction
  • crystalline phase
  • strength
  • cement
  • phase transition
  • thermogravimetry
  • differential scanning calorimetry
  • forming