People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oskouei, Asghar Vatani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Experimental study on seismic performance of squat RC shear walls reinforced with hybrid steel and GFRP rebarscitations
- 2020The effect of elevated temperatures on the compressive section capacity of pultruded GFRP profilescitations
- 2019Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperaturescitations
- 2018Effect of Sequential Exposure to UV Radiation and Water Vapor Condensation and Extreme Temperatures on the Mechanical Properties of GFRP Barscitations
- 2018Effect of applied stress and bar characteristics on the short-term creep behavior of FRP barscitations
- 2018Effect of the FRP sheet's arrays and NSM FRP bars on in-plane behavior of URM wallscitations
- 2018Flexural and web crippling properties of GFRP pultruded profiles subjected to wetting and drying cycles in different sea water conditionscitations
- 2017Experimental study of the punching behavior of GFRP reinforced lightweight concrete footingcitations
- 2017Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchoragecitations
- 2016Effect of harsh environments on mechanical properties of GFRP pultruded profilescitations
Places of action
Organizations | Location | People |
---|
article
Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing
Abstract
<p>This paper presents the results of an experimental study of structural lightweight concrete with glass fiber reinforcement (GFRP) bar for prefabricated single footing. In this study, seven full scale concrete single footings specimens, which were reinforced by GFRP bar located on a bed of soil, were tested. One of the specimens was made of normal weight concrete and the others were made of structural lightweight concrete. Four of the lightweight footing specimens contained polymer fibers. Also, two of the lightweight footing specimens contained shear reinforcement. Results indicated that the maximum GFRP strain on normal weight and lightweight concrete footing with polypropylene fibers are about 55 and 23% of the ultimate strain, respectively. Furthermore, adding polypropylene fiber and shear reinforcement enhanced the structural behavior of footings and limited the extent width of cracks which was wider in lightweight footings than that of normal weight concrete.</p>