Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shariati, Ali

  • Google
  • 3
  • 6
  • 271

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Behavior of V-shaped angle shear connectors: experimental and parametric study77citations
  • 2014Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete85citations
  • 2013Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading109citations

Places of action

Chart of shared publication
Khanouki, Mohammadmehdi Arabnejad
1 / 1 shared
Shariati, Mahdi
3 / 6 shared
Mahoutian, Mehrdad
1 / 2 shared
Suhatril, Meldi
2 / 2 shared
Khanouki, M. M. Arabnejad
2 / 3 shared
Sinaei, Hamid
1 / 2 shared
Chart of publication period
2016
2014
2013

Co-Authors (by relevance)

  • Khanouki, Mohammadmehdi Arabnejad
  • Shariati, Mahdi
  • Mahoutian, Mehrdad
  • Suhatril, Meldi
  • Khanouki, M. M. Arabnejad
  • Sinaei, Hamid
OrganizationsLocationPeople

article

Behavior of V-shaped angle shear connectors: experimental and parametric study

  • Shariati, Ali
  • Khanouki, Mohammadmehdi Arabnejad
  • Shariati, Mahdi
Abstract

<p>In this paper a new shear connector called V-shaped angle shear connector for steel–concrete composite system is proposed. This shear connector was proven to improve some mechanical properties of shear connectors, including high shear transfer, uplift resistance, sufficient ductility, and strength degradation resistance under cyclic loading, as well as to being cost effective compared with similar shear connectors, such as C-shaped channel and angle shear connectors. A total of 14 push-out tests were performed on composite beams with these connectors under monotonic and low cyclic loading. The failure mode, shear resistance, and ductility of the push-out specimens were investigated. The study also comprises of finite element and parametric analysis using an effective numerical model of the experimental push-out tests using the program ABAQUS. The finite element models were validated against the test results presented in experimental tests. Results showed that V-shaped angle shear connector has excellent behavior in terms of both shear strength and ductility. In addition, high resistance under cyclic loading was exhibited since the shear resistance of this connector was almost similar in both monotonic and cyclic loadings. Finite element results show good agreement with experimental results. The results discussed on the ductility and strength of this connector with different size and slope of inclination. In addition, the channel and angle shear connectors were compared with V-shaped angle shear connectors. V-shaped angle shear connectors behave much better than other similar connectors, such as normal angle shear connectors, and are superior to channel shear connectors in most specimens.</p>

Topics
  • impedance spectroscopy
  • strength
  • steel
  • composite
  • ductility