People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chastre, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2019Bond durability of CFRP laminates-to-steel joints subjected to freeze-thawcitations
- 2018Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steelcitations
- 2018Development of a simple bond-slip model for joints monitored with the DIC techniquecitations
- 2017Prediction of the interfacial performance of CFRP laminates and old timber bonded joints with different strengthening techniquescitations
- 2017Bond characteristics of CFRP-to-steel jointscitations
- 2017Flexural Strengthening of Old Timber Floors with Laminated Carbon Fiber-Reinforced Polymerscitations
- 2016Analysis of the debonding process of CFRP-to-timber interfacescitations
- 2016Influence of External Compressive Stresses on the Performance of GFRP-to-Concrete Interfaces Subjected to Aggressive Environments: An Experimental Analysiscitations
- 2016Experimental Evaluation of Bonding between CFRP Laminates and Different Structural Materialscitations
- 2015Numerical modelling of the effects of elevated service temperatures on the debonding process of FRP-to-concrete bonded jointscitations
- 2015Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfacescitations
- 2015Bond-slip model for FRP-to-concrete bonded joints under external compressioncitations
- 2014An experimental study of GFRP-to-concrete interfaces submitted to humidity cyclescitations
- 2013Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterioncitations
- 2013A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP compositescitations
- 2013Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfacescitations
- 2012Double shear tests to evaluate the bond strength between GFRP/concrete elementscitations
Places of action
Organizations | Location | People |
---|
article
Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces
Abstract
Fibre reinforced polymer (FRP) composites may prematurely debond from the surface of concrete, i.e. before its elastic resistance is exhausted. This is a very common situation and can be aggravated if additional factors are not taken into account. These factors include the type of surface preparation, the exposure to aggressive environmental action, the tensile concrete strength or fatigue and creep loading to which the structural element may be subject. An experimental programme based on double shear tests was undertaken to analyse the influence of some of these factors on the performance of the interface between composite glass fibres (GFRP) and concrete. The results allowed the determination and comparison of maximum loads transmitted to the GFRP plates and maximum bond stresses obtained considering various surface treatments and aging conditions. Bond-slip curves were also determined. The experimental results are compared with those obtained from a numerical analysis.