People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barrioz, Vincent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023A structural, optical and electrical comparison between physical vapour deposition and slot-die deposition of Al:ZnO (AZO)
- 2022Elimination of the carbon-rich layer in Cu2ZnSn(S, Se)4 absorbers prepared from nanoparticle inkscitations
- 2022Routes to Increase Performance for Antimony Selenide Solar Cells using Inorganic Hole Transport Layerscitations
- 2022Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Filmscitations
- 2022Exploring the Role of Temperature and Hole Transport Layer on the Ribbon Orientation and Efficiency of Sb2Se3 cells Deposited via Thermal Evaporation
- 2022Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.citations
- 2022Recovery mechanisms in aged kesterite solar cellscitations
- 2020Innovative fabrication of low-cost kesterite solar cells for distributed energy applications
- 2019Solution processing route to Na incorporation in CZTSSe nanoparticle ink solar cells on foil substratecitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrayscitations
- 2017Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVDcitations
- 2017A combined Na and Cl treatment to promote grain growth in MOCVD grown CdTe thin filmscitations
- 2016Sodium Induced Microstructural Changes in MOCVD-Grown CdTe Thin Films
- 2015MOCVD of SnSx thin films for solar cell application
- 2015Influence of CdCl2 activation treatment on ultra-thin Cd1−xZnxS/CdTe solar cellscitations
- 2014Investigation into ultrathin CdTe solar cell Voc using SCAPS modellingcitations
- 2014Investigation into ultrathin CdTe solar cellVocusing SCAPS modellingcitations
- 2014Cadmium Telluride Solar Cells on Ultrathin Glass for Space Applicationscitations
- 2013Developing Monolithically Integrated CdTe Devices Deposited by AP-MOCVD
- 2013Numerical simulation of the deposition process and the epitaxial growth of cadmium telluride thin film in a MOCVD reactorcitations
- 2011Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2010A feasibility study towards ultra-thin PV solar cell devices by MOCDV based on a p-i-n structure incorporating pyrite
- 2009Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2008The application of a statistical methodology to investigate deposition parameters in CdTe/CdS solar cells grown by MOCVDcitations
Places of action
Organizations | Location | People |
---|
article
Numerical simulation of the deposition process and the epitaxial growth of cadmium telluride thin film in a MOCVD reactor
Abstract
Metalorganic chemical vapor deposition (MOCVD) is an attractive method for depositing thin films of cadmium telluride (CdTe) and other group II−VI compound materials. It has been known that the growth rate of CdTe thin film is sensitive to the substrate temperature and the reactant partial pressures, indicating that the deposition process is kinetically controlled and affected by many conditions. In the deposition process, heterogeneous reactions play an important role in film formation, and the process is further complicated by the coupling of gas and surface reactions via desorption of the reactive intermediates. A detailed understanding of the deposition mechanism and kinetics will be crucial for the design, optimization, and scaling up of II−VI MOCVD reactors. This paper presents the results of computational fluid dynamics (CFD) modeling of the deposition process in an inline MOCVD reactor, taking into account the heat transfer and mass transport of the chemical species. The numerical simulations have been conducted using the CFD code, ANSYS FLUENT. The influence of the process controlling parameters such as the total flow rate, reactor pressure, and substrate temperature on the deposition behavior has been assessed. In the present study, dimethylcadmium and diisopropyltelluride have been used as precursors while H2 acts as the carrier gas and N2 as the flushing gas. The capabilities of using the developed CFD models for revealing the deposition mechanisms in MOCVD have been demonstrated. The simulations have been conducted in both mass transport and kinetics regimes at the temperature range of 355−455° to match the experimental conditions.