Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kshirsagar, Prashant R.

  • Google
  • 1
  • 2
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022INVESTIGATION ON FLEXURAL AND IMPACT STRENGTH OF HOLLOW GLASS FABRIC AND E-GLASS FIBER-REINFORCED SELF-HEALING POLYMER COMPOSITES1citations

Places of action

Chart of shared publication
Raja, S.
1 / 11 shared
Jarali, Chetan S.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Raja, S.
  • Jarali, Chetan S.
OrganizationsLocationPeople

article

INVESTIGATION ON FLEXURAL AND IMPACT STRENGTH OF HOLLOW GLASS FABRIC AND E-GLASS FIBER-REINFORCED SELF-HEALING POLYMER COMPOSITES

  • Raja, S.
  • Jarali, Chetan S.
  • Kshirsagar, Prashant R.
Abstract

<p>The present study investigates the self-healing functionality of e-glass unidirectional fiber-reinforced epoxy resin, based on a hollow glass fiber approach under flexural and impact loading. The planned self-healing fiber-reinforced composite constitutes epoxy resin (Lapox ARL-125 &amp;#43; AH-367), e-glass fibers with 0&amp;deg; orientation, embedded hollow glass fabric (HGF) filled with a curing agent (Lapox L-552/K-552), which provides a self-healing functionality. The developed composite is tested on the virgin, damaged, and healed conditions for the various healing periods (1, 2, and 3 days), and recovered flexural, impact strength and subsequent healing efficiency are studied. On day three, the optimum flexural strength achieved is 851.17 N/mm&lt;sup&gt;2&lt;/sup&gt;, with a healing efficiency of 74.53&amp;#37; when subjected to quasi-static load. Similarly, the optimum impact energy absorbed is 4439.26 J/m, and impact strength achieved is 445.88 kJ/m&lt;sup&gt;2&lt;/sup&gt;, with a healing efficiency of 55.58&amp;#37; when subjected to impact load. The results show that developed self-healing composites may provide excellent flexural and impact properties for marine structural applications.</p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • strength
  • flexural strength
  • resin
  • fiber-reinforced composite
  • curing