Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lopes, Anne Neiry De Mendonça

  • Google
  • 1
  • 2
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Mecanismo de atuação dos polímeros superabsorventes como agentes de cura interna para mitigar a retração autógena em concretos de alta resistência (Car) – estado da arte4citations

Places of action

Chart of shared publication
Silva, Eugênia Fonseca Da
1 / 2 shared
Filho, Romildo Dias Tolêdo
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Silva, Eugênia Fonseca Da
  • Filho, Romildo Dias Tolêdo
OrganizationsLocationPeople

article

Mecanismo de atuação dos polímeros superabsorventes como agentes de cura interna para mitigar a retração autógena em concretos de alta resistência (Car) – estado da arte

  • Lopes, Anne Neiry De Mendonça
  • Silva, Eugênia Fonseca Da
  • Filho, Romildo Dias Tolêdo
Abstract

<p>Superabsorbent polymers (SAP) are polymeric materials of synthetic origin, whose chains form a threedimensional crosslinked network. Its main feature is the ability to absorb a great amount of liquid from the environment and retain it within its structure without dissolution. SAPs can be used in a wide variety of applications, such as toiletries, coating of electrical cables, artificial snow, among many other uses. This type of polymer can also be used for internal curing to prevent autogenous shrinkage cracking in high performance concretes (HPC). The most important property of SAPs in cementitious materials is their capacity to absorb water. This property depends on the type of polymer, the size and shape of the particles, the ionic charge of the fluid and other external influences (temperature, pressure). In order to understand this property and its mitigating influence on concrete self-desiccation, a review of the state of the art about SAP is presented and its kinetics of water migration in cementitious materials. Additionally, it developed a schematic model of PSA's internal actuation mechanism as curing agent over time, in order to give subsidies to the technicalscientific community, for a better knowledge of the material, so that its use might become safe enough to be applied when appropriated.</p>

Topics
  • impedance spectroscopy
  • polymer
  • curing