Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Solís, Roberto

  • Google
  • 2
  • 10
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Alumoxane film for corrosion protection of 2024 aluminum alloy7citations
  • 2018Mechanical properties and morphological characteristics of ARALL reinforced with TRGO doped epoxy resin3citations

Places of action

Chart of shared publication
Pineda, Fabiola
1 / 3 shared
Rojas, Javier
1 / 1 shared
Páez, Maritza
1 / 3 shared
Sancy, Mamié
1 / 7 shared
Vejar, Nelson
1 / 3 shared
Alvarado, Claudia
1 / 3 shared
Palza, Humberto
1 / 7 shared
Monsalve, Alberto
1 / 5 shared
Parra, Luis
1 / 1 shared
Baeza, Diego
1 / 1 shared
Chart of publication period
2023
2018

Co-Authors (by relevance)

  • Pineda, Fabiola
  • Rojas, Javier
  • Páez, Maritza
  • Sancy, Mamié
  • Vejar, Nelson
  • Alvarado, Claudia
  • Palza, Humberto
  • Monsalve, Alberto
  • Parra, Luis
  • Baeza, Diego
OrganizationsLocationPeople

article

Mechanical properties and morphological characteristics of ARALL reinforced with TRGO doped epoxy resin

  • Palza, Humberto
  • Solís, Roberto
  • Monsalve, Alberto
  • Parra, Luis
  • Baeza, Diego
Abstract

<jats:p>ABSTRACT Mechanical properties in tension, bending, fatigue and lap-shear in two different proportions (0.5%wt and 1%wt) of TRGO (Thermally Reduced Graphite Oxide) doped ARALL (Aramid Aluminium Laminate) were examined. The materials and their failure modes were characterized morphologically by examination through SEM (Scanning Electron Microscopy). Some mechanical properties of ARALL were improved when doped with 0.5% of TRGO, showing a significant increase of fatigue properties, as well as a change in fracture surface morphology. Tension andbending properties showed variable results and further studies should be carried out to arrive to definitive conclusions, while lap-shear testing showed lower shear values. The results were statistically validated through mono-factorial variance analysis. Comparing the present results with previous work on CNT (Carbon Nanotubes) doped ARALL, it can be stated that: (a) TRGO doped ARALL showed improved fatigue properties when compared with non-doped ARALL, but in a less effective way than doping with CNT, (b) TRGO doped ARALL tension properties showed no significant variation as compared with ARALL alone, showing no deleterious influence as in the CNT doping case, (c) TRGO doped ARALL bending properties resulted better than non-doped ARALL, but similar than those obtained when doping with CNT and (d) TRGO decreased the adherence between aramid fiber impregnated L20 epoxy resin and aluminium. These last results are sustained based on observed improvements as a percentage value, without a statistical variance analysis made on CNT doped ARALL.</jats:p>

Topics
  • surface
  • Carbon
  • scanning electron microscopy
  • nanotube
  • aluminium
  • laser emission spectroscopy
  • fatigue
  • resin