People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferreirós, Pedro A.
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature watercitations
- 2023Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloy
- 2023VNbCrMo refractory high-entropy alloy for nuclear applicationscitations
- 2023Chromium-based bcc-superalloys strengthened by iron supplementscitations
- 2022Influence of precipitate and grain sizes on the brittle-to-ductile transition in Fe–Al–V bcc-L21 ferritic superalloyscitations
- 2022Study of Microstructure, Hydrogen Solubility, and Corrosion of Ta-Modified Zr–1Nb Alloys for Nuclear Applicationscitations
- 2021Effects of thermo-mechanical process on phase transitions, hydrogen solubility and corrosion of Ta-modified Zr-1Nb alloyscitations
- 2020Accurate quantitative EDS-TEM analysis of precipitates and matrix in equilibrium (α+β) Zr–1Nb alloys with Ta additioncitations
- 2019Effect of Ti additions on phase transitions, lattice misfit, coarsening, and hardening mechanisms in a Fe2AlV-strengthened ferritic alloycitations
- 2018Método innovador de ensayos de impacto en altas temperaturas aplicado en aceros al carbono
- 2018High-temperature testing in a Charpy impact pendulum using in-situ Joule heating of the specimencitations
- 2018Zirconium alloys with improved corrosion resistance and service temperature for use in the fuel cladding and core structural parts of a nuclear reactor
- 2018Efecto de la sustitución de V por Ti sobre las temperaturas de transformación de fase y el desajuste de red matriz/precipitado en la superaleación 76Fe-12Al-12V
- 2017Impact toughness transition temperature of ferritic Fe-Al-V alloy with strengthening Fe2AlV precipitatescitations
- 2017Coarsening process and precipitation hardening in Fe2AlV-strengthened ferritic Fe76Al12V12 alloycitations
- 2014Characterization of microstructures and age hardening of Fe 1-2xAlxVx alloyscitations
Places of action
Organizations | Location | People |
---|
article
Método innovador de ensayos de impacto en altas temperaturas aplicado en aceros al carbono
Abstract
<p>In this paper, an innovative method of impact tests at high temperature on sub-size Charpy V notched specimens is applied. The innovation lies in the method of heating the specimen, which is performed in situ on a Charpy impact machine type by alternating electrical current through the specimen. The specimens are heated in a few seconds (v=32 ºC/s) and held at the test temperature by an electrical circuit controlled by a thermocouple located on the specimen. Three types of steels are tested; with low, medium and high carbon content (perlitic). The impact energy was measured in the range of ductile fractures, from room temperature to 820 ºC, therefore, for the used steels the range of tested temperature contains the eutectoid phase transformation (A<sub>C1</sub>) and for the medium carbon steel is includes also has the limiting temperature Γ+Α/Γ (A<sub>C3</sub>). It is concluded from tests analysis that the impact energy is sensitive to phase transformations. In turn, below A<sub>C1</sub> the raise of temperature produced a progressive decrease in the energy absorbed up to a minimum at intermediate temperatures and then up to a maximum prior to phase transformation. Although the initial impetus for the development of this new technology was to estimate the brittle ductile transition that occurs at high temperature for some metal alloys, the wide range of temperatures, high test speed and simplicity of equipment, provides a new research tool for studies at different temperatures, especially on materials having embrittlement activation mechanisms at specific temperature intervals.</p>