People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Monteiro, Fj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Full physicochemical and biocompatibility characterization of a supercritical CO2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regenerationcitations
- 202145S5 Bioglass-Derived Glass-Ceramic Scaffolds Containing Niobium Obtained by Gelcasting Methodcitations
- 2020Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implantscitations
- 2019Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behaviorcitations
- 2019Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substratecitations
- 2018Highly porous 45S5 bioglass-derived glass-ceramic scaffolds by gelcasting of foamscitations
- 2018Micropatterned Silica Films with Nanohydroxyapatite for Y-TZP Implantscitations
- 2016Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regenerationcitations
- 2014Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applicationscitations
- 2014Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formationcitations
- 2012Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration materialcitations
- 2008PLD bioactive ceramic films: the influence of CaO-P(2)O(5) glass additions to hydroxyapatite on the proliferation and morphology of osteblastic like-cellscitations
- 2004Production of porus hydroxyapatite with potential for controlled drug delivery
- 2004Porous hydroxyapatite and glass reinforced hydroxyapatite for controlled release of sodium ampicillin
- 2000Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applicationscitations
Places of action
Organizations | Location | People |
---|
article
45S5 Bioglass-Derived Glass-Ceramic Scaffolds Containing Niobium Obtained by Gelcasting Method
Abstract
Scaffolds of bioglass derived from BG45S5 (45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O and 6 wt% P2O5) containing 10 wt% niobium were prepared by gelcasting method. The scaffolds presented a 3D porous structure with interconnected and spherical pores (pore size range 100 mu m to 500 mu m) and high porosity (89%), similar to trabecular architecture of spongy bone. The compressive strength was 0.18 +/- 0.03 MPa which is acceptable for bone repair applications. The in vitro biological studies showed cytocompatibility for human osteoblastic cells as well tendency for higher alkaline phosphatase activity. Therefore, the findings here suggest the great potential of the scaffolds for using in bone tissue engineering.