Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oliveira, Verona Biancardi

  • Google
  • 2
  • 8
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Microstructure and residual stresses in a friction stir welded butt joint of as-cast ZK60 alloy containing rare earths10citations
  • 2016Development and application of a homemade procedure for manufacturing of mechanical spare parts1citations

Places of action

Chart of shared publication
Pinto, Haroldo Cavalcanti
1 / 13 shared
Pereira, Victor Ferrinho
1 / 3 shared
Buzolin, Ricardo Henrique
2 / 54 shared
Maluf, Omar
1 / 2 shared
Silva, Erenilton Pereira Da
1 / 4 shared
Viana, Carlos Sérgio Da Costa
1 / 1 shared
Cardoso, Claudine Guimarães Leite
1 / 1 shared
Aliaga, Luis Cesar Rodriguez
1 / 1 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Pinto, Haroldo Cavalcanti
  • Pereira, Victor Ferrinho
  • Buzolin, Ricardo Henrique
  • Maluf, Omar
  • Silva, Erenilton Pereira Da
  • Viana, Carlos Sérgio Da Costa
  • Cardoso, Claudine Guimarães Leite
  • Aliaga, Luis Cesar Rodriguez
OrganizationsLocationPeople

article

Microstructure and residual stresses in a friction stir welded butt joint of as-cast ZK60 alloy containing rare earths

  • Pinto, Haroldo Cavalcanti
  • Pereira, Victor Ferrinho
  • Oliveira, Verona Biancardi
  • Buzolin, Ricardo Henrique
  • Maluf, Omar
  • Silva, Erenilton Pereira Da
Abstract

<p>The effect of a travel speed of 200 mm/min as well as a tool rotational speed of 1200 rpm on butt joint quality of friction stir welding (FSW) ZK60 magnesium casting alloy containing 1.5 wt.% rare earths (ZK60-1.5RE) was investigated to determine microstructure and residual stresses. FSW results in the generation of heterogeneous metallurgical structures consisting of the base material (BM), stirred zone (SZ) and thermo-mechanical affected zone (TMAZ). The stirring action also produced a non-uniform distribution and segregation of intermetalics. The transversal distribution of the longitudinal welding stresses exhibits a "M-like" shape with mostly tensile stresses under the shoulder region and only one compressive stress peak in the advancing side of the SZ and TMAZ. It could be demonstrated that FSW of ZK60-1.5RE alloy was successful in the welding conditions applied during the present work.</p>

Topics
  • microstructure
  • Magnesium
  • Magnesium
  • casting