Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gugelmin, Bruno Schneider

  • Google
  • 1
  • 3
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Electrochemical stability and bioactivity evaluation of Ti6Al4V surface coated with thin oxide by EIS for biomedical applications19citations

Places of action

Chart of shared publication
Marino, Cláudia Eliana Bruno
1 / 1 shared
Sopchenski Santos, Luciane
1 / 11 shared
Ponte, Haroldo De Araújo
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Marino, Cláudia Eliana Bruno
  • Sopchenski Santos, Luciane
  • Ponte, Haroldo De Araújo
OrganizationsLocationPeople

article

Electrochemical stability and bioactivity evaluation of Ti6Al4V surface coated with thin oxide by EIS for biomedical applications

  • Marino, Cláudia Eliana Bruno
  • Sopchenski Santos, Luciane
  • Gugelmin, Bruno Schneider
  • Ponte, Haroldo De Araújo
Abstract

<p>To improve the implants biocompatibility many surface modifications were proposed. Investigations about the surface modification on Ti alloys by anodic oxidation are reported. This research presents a study on the stability of thin titanium dioxide grown by potentiodynamic method on Ti6Al4V surfaces up to 5.0 V. Its bioactive surface in phosphate buffer solution (PBS) and the oxide stability after immersion in artificial blood media were measured by Electrochemical Impedance Spectroscopy (EIS). Hydroxyapatite (HAP) presence was evaluated using simulated body fluid (SBF) with different immersion times. The oxides and HAP presence were analyzed by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The oxide stability was confirmed with low dissolution rates where the Rp was around 106Ω.cm2. The results showed the TiO2 was compact and thin oxide that could prevent the severe corrosion processes and improve in few days the physicalchemical interaction of the Ti alloys with bone in physiological media.</p>

Topics
  • surface
  • corrosion
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • titanium
  • electrochemical-induced impedance spectroscopy
  • biocompatibility
  • bioactivity