Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cotta, Monica Alonso

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effects of argon plasma and aging on the mechanical properties and phase transformation of 3Y-TZP zirconia2citations

Places of action

Chart of shared publication
Negreiros, William Matthew
1 / 2 shared
Giannini, Marcelo
1 / 10 shared
Nascimento, Fabio Dupart
1 / 1 shared
Bonvent, Jean Jacques
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Negreiros, William Matthew
  • Giannini, Marcelo
  • Nascimento, Fabio Dupart
  • Bonvent, Jean Jacques
OrganizationsLocationPeople

article

Effects of argon plasma and aging on the mechanical properties and phase transformation of 3Y-TZP zirconia

  • Negreiros, William Matthew
  • Cotta, Monica Alonso
  • Giannini, Marcelo
  • Nascimento, Fabio Dupart
  • Bonvent, Jean Jacques
Abstract

<p>To evaluate the flexural strength (FS) and flexural modulus (FM) of a commercial 3Y-TZ0P ceramic after artificial aging and either without or with two application times of non-thermal plasma treatments (NTP). In addition, changes in crystalline phase transformation and surface nano-topography after NTP application, during different aging periods, were evaluated. Ninety 3Y-TZP bars (45x4x3 mm) were made for FS and FM testing, and assigned to nine groups (n=10): No NTP/no aging (Control); no NTP/4h aging; no NTP/30h aging; 10s NTP/no aging; 10s NTP/4h aging; 10s NTP/30h aging; 60s NTP/no aging; 60s NTP/4h aging and 60s NTP/30h aging. Artificial accelerated aging was simulated using an autoclave (134° C at 2 bar) for up to 30h. FS and FM were assessed using a universal testing machine and data analyzed using a ANOVA and Tukey test (α=0.05). The volume change in zirconia monoclinic phase (MPV) was evaluated using X-ray diffraction and surface nanotopography was assessed using atomic force microscopy (baseline until 30h-aging). NTP application did not influence the FS and FM of zirconia. Compared to the Control (no NTP/no aging), the FS of zirconia samples treated for 30 hours in autoclave ("no NTP/30h aging" group) increased. Artificial aging for 30 hours significantly increased the FM of zirconia, regardless of NTP application. MPV tended to increase following the increase in aging time, which might result in the surface irregularities observed at 30h-aging. NTP did not alter the zirconia properties tested, but 30h-aging can change the zirconia FS, FM and MPV.</p>

Topics
  • surface
  • x-ray diffraction
  • atomic force microscopy
  • crystalline phase
  • strength
  • flexural strength
  • aging
  • ceramic
  • aging