Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paloco, Eloisa Aparecida Carlesse

  • Google
  • 2
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Effect of Protein-Based Treatment on Chemical Composition, Hardness and Bond Strength of Remineralized Enamel1citations
  • 2021Effect of Amelogenin Solution in the Microhardness of Remineralized Enamel and Shear Bond Strength of Orthodontic Brackets2citations

Places of action

Chart of shared publication
Guiraldo, Ricardo
2 / 7 shared
Berger, Sandrine
2 / 9 shared
Amâncio, Daniele Cristina
1 / 1 shared
Fernandes Giuliangeli, Débora
1 / 1 shared
Santos, Lucineide
1 / 1 shared
Monteiro, Julia
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Guiraldo, Ricardo
  • Berger, Sandrine
  • Amâncio, Daniele Cristina
  • Fernandes Giuliangeli, Débora
  • Santos, Lucineide
  • Monteiro, Julia
OrganizationsLocationPeople

article

Effect of Protein-Based Treatment on Chemical Composition, Hardness and Bond Strength of Remineralized Enamel

  • Paloco, Eloisa Aparecida Carlesse
  • Guiraldo, Ricardo
  • Berger, Sandrine
  • Amâncio, Daniele Cristina
Abstract

<jats:p>Abstract This study evaluated the chemical composition and microhardness of human enamel treated with an Enamel Matrix Derivative (EMD) solution, and the bond strength between composite resin and this enamel. Thirty human enamel samples were randomly divided into three groups: Untouched Enamel (UE), Demineralized Enamel (DE) and Demineralized Enamel Treated with EMD (ET). DE and ET groups were subjected to acid challenge and ET treated with EMD (EMD was directly applied over conditioned enamel and left for 15 min). Samples from each group (n=4) had chemical composition assessed through to attenuated total reflectance Fourier transform infrared (ATR-FTIR). Knoop microhardness of enamel samples from each group (n=10) was measured. For the microshear bond strength, the samples were etched for 30 s, and the adhesive was applied and cured for 10 s. Two matrixes were placed on the samples, filled with Filtek Z350 XT composite and cured for 20 s, each. The matrix was removed, and the microshear bond strength of each group (n=10) was tested. Data were subjected to Kruskal-Wallis test (for microhardness), to analysis of variance and to Tukey’s test (for microshear bond strength); (α=0.05). FTIR results have shown phosphate (hydroxyapatite indicator) in 900-1200 cm-1 bands in the UE and ET groups, which were different from the DE group. Microhardness and microshear analyses recorded higher statistical values for the UE and ET groups than for DE. EMD application to demineralized enamel seems to have remineralized the enamel; thus, the microhardness and bond strength was similar between UE and ET groups.</jats:p>

Topics
  • strength
  • composite
  • hardness
  • chemical composition
  • resin