Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ambrosano, Gláucia Maria Bovi

  • Google
  • 1
  • 6
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Effect of ceramic interposition and post-activation times on knoop hardness of different shades of resin cement14citations

Places of action

Chart of shared publication
Consani, Simonides
1 / 3 shared
Moreno, Marina Barrêto Pereira
1 / 1 shared
Sinhoreti, Mário Alexandre Coelho
1 / 4 shared
Correr, Américo Bortolazzo
1 / 2 shared
Costa, Ana Rosa
1 / 3 shared
Correr-Sobrinho, Lourenço
1 / 4 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Consani, Simonides
  • Moreno, Marina Barrêto Pereira
  • Sinhoreti, Mário Alexandre Coelho
  • Correr, Américo Bortolazzo
  • Costa, Ana Rosa
  • Correr-Sobrinho, Lourenço
OrganizationsLocationPeople

article

Effect of ceramic interposition and post-activation times on knoop hardness of different shades of resin cement

  • Consani, Simonides
  • Moreno, Marina Barrêto Pereira
  • Sinhoreti, Mário Alexandre Coelho
  • Correr, Américo Bortolazzo
  • Costa, Ana Rosa
  • Correr-Sobrinho, Lourenço
  • Ambrosano, Gláucia Maria Bovi
Abstract

<p>The aim of this study was to evaluate Knoop hardness of different shades of a resin cement light-cured directly or through ceramic discs, measured 15 min or 24 h after light exposure, and at different depths. Specimens of a commercial resin cement (Variolink Veneer) in seven shades, were fabricated in an elastomeric mold, covered with a mylar strip, a 0.7 mm thick ceramic disc (IPS e.max Press) was placed and the cement was light-activated for 20 s using a blue LED (Radii-Cal). The cured resin cement specimens were transversely wet-flattened to their middle portion and microhardness (Knoop) values were recorded at 15 min after light exposure and after deionized water storage at 37 °C for 24 h. Five indentations were made in the cross-sectional area at 100 and 700 µm depths from the top surface. Ten specimens were made for each test conditions. Data were submitted to ANOVA split-plot design (shade, post-cure time, mode of activation and depth), followed by Tukey post hoc test (α=0.05). Significant differences for shade (p&lt;0.0001), mode of activation (p&lt;0.001), post-cure time (p&lt;0.0001) and depth (p&lt;0.0001) were detected. No significant interactions (p&gt;0.05) were found, except for shade x post-cure time (p&lt;0.0045) and mode of activation x post-cure time (p&lt;0.0003). Resin cement shade has a significant effect on Knoop hardness. Indirect activation through a ceramic material reduced significantly Knoop hardness. Hardness Knoop significantly increased after 24 h in all cements shades compared to values obtained after 15 min. Resin cement depth significantly reduced Knoop hardness.</p>

Topics
  • surface
  • cement
  • hardness
  • activation
  • ceramic
  • resin