Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Azari, Zitoune

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017The influence of variations of geometrical parameters on the notching stress intensity factors of cylindrical shells3citations

Places of action

Chart of shared publication
Dearn, K. D.
1 / 11 shared
Pruncu, Catalin I.
1 / 28 shared
Babaoui, Abdelhak
1 / 1 shared
Alaoui, Moulay A. Hamdi
1 / 1 shared
Moustabchir, Hassane
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Dearn, K. D.
  • Pruncu, Catalin I.
  • Babaoui, Abdelhak
  • Alaoui, Moulay A. Hamdi
  • Moustabchir, Hassane
OrganizationsLocationPeople

article

The influence of variations of geometrical parameters on the notching stress intensity factors of cylindrical shells

  • Dearn, K. D.
  • Pruncu, Catalin I.
  • Babaoui, Abdelhak
  • Alaoui, Moulay A. Hamdi
  • Azari, Zitoune
  • Moustabchir, Hassane
Abstract

<p>The modern approach of Virtual Engineering allows one to detect with some accuracy the residual life of components especially free of cracks. The life estimation becomes cumbersome when the components contain a crack. A straightforward formulation requires a parameter that considers geometrical constraints and materials properties. The magnitude of the stress singularity developed by the tip of a crack, needs to be expressed by the Stress Intensity Factors (SIF). In order to prove the validity of the results, calibration by experimental and/or analytical technique is required. To have a better understanding of this parameter, in the first part of this paper an analytical model to compute the SIF connected to crack propagation into Mode I has been implemented. The case study displays a pipeline component with a crack defect submitted to internal pressure. Therefore, an appropriate correlation between the analytical approach and numerical simulation has been established embedded.</p>

Topics
  • impedance spectroscopy
  • simulation
  • crack