Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Popov, Viktor

  • Google
  • 10
  • 16
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Molybdenum-carbide and tungsten-carbide CVD coatings obtained by Avinit vacuum-plasma technologies.citations
  • 2023Molybdenum-carbide and tungsten-carbide CVD coatings obtained by Avinit vacuum-plasma technologies. ...citations
  • 2022Tribological Characteristics of Nitrided in Plasma Glow Discharge Samples Made from Titanium Alloy VT5 in Pairs with Different Materialscitations
  • 2021The effect of obtaining conditions on the structure and composition of Cu-MoS2 coatings upon magnetron sputtering of composite targetscitations
  • 2021Застосуванная вакуум-плазмових технологій Avinit до виготовлення повнорозмірних високоточних шестеренcitations
  • 2020Розробка дуплексної технології Avinit для підвищення зносостійкості сепаратора редуктора. ; Разработка дуплексной технологии Avinit для повышения износостойкости сепаратора редуктора ; Development of Avinit duplex technology to increase the wear resistance of the gearbox separatorcitations
  • 2020Розробка дуплексної технології Avinit для підвищення зносостійкості сепаратора редуктора. ; Разработка дуплексной технологии Avinit для повышения износостойкости сепаратора редуктора ; Development of Avinit duplex technology to increase the wear resistance of the gearbox separatorcitations
  • 2020Development of the chemical vapor deposition process for applying molybdenum coatings on the components in assembly and engine construction11citations
  • 2020Development of the chemical vapor deposition process for applying molybdenum coatings on the components in assembly and engine construction ; Разработка газофазного процесса нанесения молибденовых покрытий на детали агрегато- и двигателестроения ; Розробка газофазного процесу нанесення молібденових покриттів стосовно деталей агрегато- і двигунобудуванняcitations
  • 2020Comparative Analysis of the Fatigue Contact Strength of Surfaces Hardened by Cementation and the Ion Plasma Nitriding Аvinit Ncitations

Places of action

Chart of shared publication
Dudnik, Stanislav
6 / 6 shared
Sagalovych, Vladislav
6 / 6 shared
Sagalovych, Olexiy
2 / 2 shared
Popenchuk, Roman
4 / 4 shared
Oleynik, Alexandr
1 / 1 shared
Sagalovich, Alex
1 / 9 shared
Dzuiba, Artem
1 / 1 shared
Sagalovych, Alex
6 / 6 shared
Edinovych, Andrew
1 / 1 shared
Sagalovych, Vladuslav
1 / 1 shared
Sagalovych, Alexei
1 / 1 shared
Stupakov, Alexander
2 / 2 shared
Edinovych, Andrey
3 / 3 shared
Dudnik, Stas
4 / 4 shared
Sagalovych, Vlad
2 / 4 shared
Bogoslavzev, Vladimir
1 / 1 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Dudnik, Stanislav
  • Sagalovych, Vladislav
  • Sagalovych, Olexiy
  • Popenchuk, Roman
  • Oleynik, Alexandr
  • Sagalovich, Alex
  • Dzuiba, Artem
  • Sagalovych, Alex
  • Edinovych, Andrew
  • Sagalovych, Vladuslav
  • Sagalovych, Alexei
  • Stupakov, Alexander
  • Edinovych, Andrey
  • Dudnik, Stas
  • Sagalovych, Vlad
  • Bogoslavzev, Vladimir
OrganizationsLocationPeople

document

Development of the chemical vapor deposition process for applying molybdenum coatings on the components in assembly and engine construction

  • Dudnik, Stas
  • Sagalovych, Vlad
  • Popov, Viktor
  • Sagalovych, Alex
  • Popenchuk, Roman
Abstract

The process of chemical vapor deposition of Mo and Mo-С coatings was studied by means of thermal decomposition of molybdenum hexacarbonyl. The kinetics of the coating growth in the range of 480 °C–540 °C and the pressure in the reaction volume from 9 Pa to 16 Pa were explored. The dependences of coating growth rate, the magnitudes of their microhardness on the parameters of their obtaining, as well as the changes in the morphology of the coating surface, roughness, and structure, were established. The tribological properties of the obtained coatings coupled with bronze Br.Su3H3S20F0.2 were explored at the friction machine 2070 SMT-1 according to the "cube–roller" scheme in a load interval of 0.2–1.4 kN. The lubrication during determining the friction coefficients was carried out by immersion of the movable counter body into a bath with fuel TC-1, GOST 10227-86. It was necessary to conduct such research because there is insufficient information when it comes to the specific equipment and peculiarities of the object onto which a coating is applied.When developing the process of coating application on specific components, techniques, and means to ensure the uniformity of parts heating and precursor feeding to their surface were tested. As a result of the conducted studies, we obtained the regions of parameters of obtaining coatings with different structure, rate, hardness, as well as the patterns of changes in these characteristics at the change of the basic parameters of the process of obtaining such coatings. Depending on application conditions, coatings may have hardness from ~11,000 MPa to 18,000 MPa at a growth rate from 50 μm/h to 170 μm/h. The mean values of the friction coefficient of coatings with different microstructure and microhardness were 0.101 at the load of 0.2 kN and 0.077 at the load of 1.4 kN.Based on the conducted research, it was possible to develop the process of applying the metal and metal-carbide molybdenum-based CVD coatings in regards to the components of the assembly and engine construction, which can serve as the basis for the development of industrial technologies.

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • surface
  • molybdenum
  • carbide
  • hardness
  • bronze
  • thermal decomposition
  • chemical vapor deposition