Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tegze, A.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Electric explosion of amorphous iron alloy ribbons in water and in ethylene glycolcitations

Places of action

Chart of shared publication
Lázár, Károly
1 / 3 shared
Klencsár, Z.
1 / 4 shared
Stichleutner, S.
1 / 11 shared
Kovács-Kis, V.
1 / 1 shared
Varga, L. K.
1 / 7 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lázár, Károly
  • Klencsár, Z.
  • Stichleutner, S.
  • Kovács-Kis, V.
  • Varga, L. K.
OrganizationsLocationPeople

article

Electric explosion of amorphous iron alloy ribbons in water and in ethylene glycol

  • Lázár, Károly
  • Klencsár, Z.
  • Stichleutner, S.
  • Kovács-Kis, V.
  • Tegze, A.
  • Varga, L. K.
Abstract

<jats:title>Abstract</jats:title><jats:p>Electric explosions of amorphous ribbons (Fe<jats:sub>45</jats:sub>Co<jats:sub>45</jats:sub>Zr<jats:sub>7</jats:sub>B<jats:sub>3</jats:sub> HITPERM, Fe<jats:sub>73.5</jats:sub>Si<jats:sub>15.5</jats:sub>B<jats:sub>7</jats:sub>Nb<jats:sub>3</jats:sub>Cu<jats:sub>1</jats:sub> FINEMET, and bulk amorphous Fe<jats:sub>71.6</jats:sub>Mn<jats:sub>0.6</jats:sub>Si<jats:sub>3.4</jats:sub>C<jats:sub>12.3</jats:sub>B<jats:sub>12.2</jats:sub>) were studied in water and for the bulk amorphous alloy in ethylene glycol, in order to study whether the amorphous state can be preserved in the process. Formed products were collected and analyzed by Scanning Electron Microscopy, X-ray diffraction, Mössbauer spectroscopy, and High-Resolution Transmission Electron Microscopy. Chemical reactions have taken place in large extent between melted and evaporated components of ribbons and the decomposed cooling media. The oxidation reactions removed quickly the glass-forming elements (Zr, B, Si) from the metallic particles. Oxides were formed both on surface of globules and in separate phases from evaporated components. The amorphous state was partly retained in FINEMET, and to a greater extent in bulk amorphous alloy. Chemical interactions were more limited in ethylene glycol and carbon atoms formed from the decomposed coolant contributed to stabilization of amorphous phase.</jats:p><jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>

Topics
  • surface
  • amorphous
  • Carbon
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • glass
  • transmission electron microscopy
  • forming
  • iron
  • Mössbauer spectroscopy
  • iron alloy