People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pimental, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Enhancement of the electrical properties of ITO deposited on polymeric substrates by using a ZnO buffer layer
Abstract
In this paper we present the effect of the insertion of a non-doped nanocrystalline zinc oxide/buffer layer on the electrical, optical and structural properties of indium tin oxide produced at room temperature by radio frequency plasma enhanced reactive thermal evaporation on polymeric substrates. The electrical resistivity of the ITO films is reduced by more than two orders of magnitude (4.5-10(-1) to 2.9x10(-3) Omegacm). From the Hall effect measurements it is observed that the large decrease associated to the electrical resistivity, is due to the increase associated to the Hall mobility. Concerning the optical properties no effect was observed, being the transmittance in the visible and near the infra red region always higher than 80%.