Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ohto, Tokio

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Reaction Control in Amorphous Silicon Film Deposition by Hydrogen Chloride1citations

Places of action

Chart of shared publication
Takano, Akihiro
1 / 3 shared
Fujikake, Shinji
1 / 1 shared
Wada, Takehito
1 / 1 shared
Yoshida, Takashi
1 / 1 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Takano, Akihiro
  • Fujikake, Shinji
  • Wada, Takehito
  • Yoshida, Takashi
OrganizationsLocationPeople

article

Reaction Control in Amorphous Silicon Film Deposition by Hydrogen Chloride

  • Takano, Akihiro
  • Fujikake, Shinji
  • Wada, Takehito
  • Ohto, Tokio
  • Yoshida, Takashi
Abstract

<p>HCl was added to SiH<sub>4</sub> containing plasmas to grow a-Si:H(Cl) films with dangling bonds terminated with Cl instead of H. Bulk and surface infrared spectra, film thickness and optical band gap were examined by in situ multiple total internal reflection Fourier transform infrared spectroscopy and in situ spectroscopic ellipsometry. SiH<sub>2</sub>Cl<sub>2</sub> was also used as a conventional Cl source for reference a-Si:H(Cl) film deposition experiments. The introduction of HCl does not affect the deposition rate significantly, and the deposited a-Si:H(Cl) films contain over 10 <sup>21</sup>cm<sup>-3</sup> Cl atoms. HCl addition to the gas phase changes the surface compositions of the growing films drastically from higher silicon hydride to chlorinated lower hydride. The surface reaction control eliminates unfavorable hydride bonding structures such as SiH<sub>2</sub> and/or SiH in voids in the deposited films. The a-Si:H(Cl) films deposited from mixtures of SiH<sub>4</sub> and HCl do not show significant optical band gap widening in spite of containing over 10<sup>21</sup>cm<sup>-3</sup> Cl atoms, a concentration that is comparable to that of hydrogen. In contrast, a conventional chlorine source of SiH<sub>2</sub>Cl<sub>2</sub> increases the deposition rate significantly compared to HCl. The increase in the deposition rate results in monotonie decrease of the refractive index and the optical band gap widening.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • amorphous
  • experiment
  • Hydrogen
  • Silicon
  • ellipsometry
  • void
  • gas phase
  • Fourier transform infrared spectroscopy