Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Weaver, B. D.

  • Google
  • 2
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2001Optical Absorption of Nitrogen Vacancy in Proton Irradiated Al<sub>x</sub>Ga<sub>1-x</sub>N thin Filmscitations
  • 2001Thermal Anneal Effects on Carbon-Hydrogen LVMs In AlGaNcitations

Places of action

Chart of shared publication
Ferguson, Ian T.
1 / 1 shared
Manasreh, M. O.
2 / 13 shared
Zhou, Qiaoying
1 / 2 shared
Pophristic, M.
1 / 4 shared
Chart of publication period
2001

Co-Authors (by relevance)

  • Ferguson, Ian T.
  • Manasreh, M. O.
  • Zhou, Qiaoying
  • Pophristic, M.
OrganizationsLocationPeople

article

Thermal Anneal Effects on Carbon-Hydrogen LVMs In AlGaN

  • Weaver, B. D.
  • Manasreh, M. O.
Abstract

<jats:title>Abstract</jats:title><jats:p>Thermal annealing effects on carbon-hydrogen (C-H) complexes defects in AlGaN grown on sapphire by metalorganic chemical vapor deposition (MOCVD) technique have been investigated using Fourier transform infrared spectroscopy (FTIR). The CH complexes in AlGaN, formed either during growth or by proton irradiation, exhibit five local vibrational modes (LVMs) due to the symmetric and asymmetric vibrational stretching modes of C-H in CH<jats:sub>n</jats:sub> (n=1–;3) defect complexes. It was found that the annealing temperature (T<jats:sub>a</jats:sub>) of 500°C is sufficient enough to dissociate most of the C-H complexes in AlGaN samples. A turning point annealing temperature is found around 300°C for un-irradiated Mg-doped sample, below which the total integrated area of the C-H LVMs continued to increase with increasing annealing temperature and reach the maximum value around 300°C. At T<jats:sub>a</jats:sub> &gt; 300°C, the total integrated area of the C-H LVMs starts to decrease and the C-H complexes seem to be completely depleted at T<jats:sub>a</jats:sub> &gt; 600°C. The depleted C-H LVMs were observed to partially recover after thermal annealing at T<jats:sub>a</jats:sub> &gt; 500°C and waiting for aging periods of several days. This recovery behavior is explained in terms of the hydrogen being remained inside the crystal after the dissociation of C-H complexes, subsequent diffusion and recombining again with carbon atom to reform C-H complexes.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • Hydrogen
  • defect
  • aging
  • annealing
  • Fourier transform infrared spectroscopy
  • chemical vapor deposition
  • aging