People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ager, J. W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2013P-type and undoped InGaN across the entire alloy composition range
- 2013P-type InGaN across the entire alloy composition rangecitations
- 2012Embedded binary eutectic alloy nanostructurescitations
- 2009Properties of native point defects in In1-xAlxN alloyscitations
- 2008Characterization of MG-doped InGaN and InALN alloys grown by MBE for solar applicationscitations
- 2008Band gap bowing parameter of In1-x Alx Ncitations
- 2008High efficiency InAlN-based solar cellscitations
- 2008Low-temperature grown compositionally graded InGaN filmscitations
- 2002Band anticrossing in highly mismatched group II-VI semiconductor alloys
- 2002Band anticrossing effects in MgyZn1-yTe 1-xSex alloyscitations
- 2000Synthesis of III-Nx-V1-x Thin Films by N Ion Implantationcitations
Places of action
Organizations | Location | People |
---|
document
Synthesis of III-Nx-V1-x Thin Films by N Ion Implantation
Abstract
Dilute III-N<sub><i>x</i></sub>-V<sub><i>1-x</i></sub> alloys were successfully synthesized by nitrogen implantation in GaAs and InP. The fundamental band gap energy for the ion beam synthesized III-N<sub><i>x</i></sub>-V<i><sub>1-x</sub> </i>alloys was found to decrease with increasing N implantation dose in a manner similar to that commonly observed in epitaxially grown GaN<sub><i>x</i></sub>As<i><sub>1-x</sub> </i>and InN<sub><i>x</i></sub>P<sub><i>1-x</i></sub> thin films. The fraction of N occupying anion sites ("active" N) in the GaN<sub style="font-style: italic;">x</sub>As<i><sub>1-x</sub> </i>layers formed by N implantation was thermally unstable and decreased with increasing annealing temperature. In contrast, thermally stable InN<sub><i>x</i></sub>P<sub><i>1-x</i></sub> alloys with N mole fraction as high as 0.012 were synthesized by N implantation in InP. Moreover, the N activation efficiency in InP was at least a factor of two higher than in GaAs under similar processing conditions. The low N activation efficiency (<20%) in GaAs can be improved by co-implanting Ga and N in GaAs.