Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gray, Jeremy

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007In Situ Investigation of the Silver-CTAB Systemcitations

Places of action

Chart of shared publication
Orme, Christine
1 / 1 shared
Srolovitz, David
1 / 65 shared
Du, Danxu
1 / 2 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Orme, Christine
  • Srolovitz, David
  • Du, Danxu
OrganizationsLocationPeople

document

In Situ Investigation of the Silver-CTAB System

  • Gray, Jeremy
  • Orme, Christine
  • Srolovitz, David
  • Du, Danxu
Abstract

Recent research has shown that biologically inspired approaches to materials synthesis and self-assembly, hold promise of unprecedented atomic level control of structure and interfaces. In particular, the use of organic molecules to control the production of inorganic technological materials has the potential for controlling grain structure to enhance material strength; controlling facet expression for enhanced catalytic activity; and controlling the shape of nanostructured materials to optimize optical, electrical and magnetic properties. In this work, we use organic molecules to modify silver crystal shapes towards understanding the metal-organic interactions that lead to nanoparticle shape control.<br/><br/>Using in situ electrochemical AFM (ECAFM) as an in situ probe, we study the influence of a cationic surfactant cetyltrimethylamminobromide (CTAB) on Ag growth during electrochemical deposition on Ag(100). The results show that the organic surfactant promotes the growth of steps on the (100) surface and changes the surface evolution from island nucleation to step flow growth. Overall, this leads to a smoother, faster growing (100) surface, which may promote plate-formation.

Topics
  • nanoparticle
  • Deposition
  • surface
  • grain
  • silver
  • atomic force microscopy
  • strength
  • self-assembly
  • surfactant