Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kaloyeros, Alain

  • Google
  • 3
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2006Copper Electroplating on Zero-Thickness ALD Platinum for Nanoscale Computer Chip Interconnects1citations
  • 2006Platinum Liner Deposited by Atomic Layer Deposition for Cu Interconnect Application4citations
  • 2003Enhancement of Copper Wetting via Surfactant-Based Post-Treatment of Ultra-Thin Atomic Layer Deposited Tantalum Nitride Linerscitations

Places of action

Chart of shared publication
Mayti, Richard
1 / 1 shared
Zhu, Yu
3 / 6 shared
Breslin, Matthew
1 / 1 shared
Miller, Christopher
1 / 2 shared
Straten, Oscar Van Der
1 / 3 shared
Chart of publication period
2006
2003

Co-Authors (by relevance)

  • Mayti, Richard
  • Zhu, Yu
  • Breslin, Matthew
  • Miller, Christopher
  • Straten, Oscar Van Der
OrganizationsLocationPeople

article

Copper Electroplating on Zero-Thickness ALD Platinum for Nanoscale Computer Chip Interconnects

  • Kaloyeros, Alain
  • Mayti, Richard
  • Zhu, Yu
  • Breslin, Matthew
  • Miller, Christopher
Abstract

<jats:title>Abstract</jats:title><jats:p>Ultra-thin platinum (Pt) films grown by atomic layer deposition (ALD) have been investigated as an alternative to conventional physical vapor deposited (PVD) Cu as seed layer for copper (Cu) electroplating. The wetting angles between the electrolyte and both Pt and Cu seed layers were analyzed using sessile-drop contact-angle analysis prior to plating. Both constant current and pulse reverse current (PRC) were applied to electroplate Cu on both types of blanket seed layers. Scanning electron microscope (SEM) revealed that Cu nucleation density on ALD Pt is lower than on its PVD Cu counterpart, after 30 seconds plating using PRC. Nevertheless, Cu nuclei were observed after only 1.0 minute plating on ALD Pt surfaces, and continuous Cu films were achieved at longer plating times. To fill trench structures coated with ALD Pt/TaN, PRC was applied using the same organic-additive-free electrolyte. Initial results suggest that these seed layers were adequate for ECD fill of trenches with 200 nm feature size and aspect ratio 7:1. The composition and microstructure of the Cu films were analyzed by Auger electron spectroscopy (AES), X-ray diffraction (XRD), and cross-sectional transmission electron microscopy (TEM). Thermal stability of the Cu/Pt system was examined by annealing in forming gas at 450°C for 1 hour and subsequent analysis by XRD and TEM.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • Platinum
  • physical vapor deposition
  • transmission electron microscopy
  • copper
  • forming
  • annealing
  • atomic emission spectroscopy
  • Auger electron spectroscopy
  • atomic layer deposition