Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Espinosa, Luis Alberto

  • Google
  • 2
  • 10
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Using Intercritical CCT Diagrams and Multiple Linear Regression for the Development of Low-Alloyed Advanced High-Strength Steels3citations
  • 2016Surface quality evaluation of hot deformed aluminumcitations

Places of action

Chart of shared publication
Saldaña Garcés, Rocio
1 / 2 shared
Pino, Bryan Y. Navarrete
1 / 1 shared
Deaquino-Lara, Rogelio
1 / 3 shared
Jacuinde, Arnoldo Bedolla
1 / 1 shared
Reyes, Carlos G. Garay
1 / 1 shared
Hernández, Lorena Hernández
1 / 1 shared
Salinas Rodriguez, Armando
1 / 4 shared
Castañeda, Emmanuel J. Gutiérrez
1 / 1 shared
Castillo, Antonio A. Torres
1 / 1 shared
Reyes, Iván
1 / 4 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Saldaña Garcés, Rocio
  • Pino, Bryan Y. Navarrete
  • Deaquino-Lara, Rogelio
  • Jacuinde, Arnoldo Bedolla
  • Reyes, Carlos G. Garay
  • Hernández, Lorena Hernández
  • Salinas Rodriguez, Armando
  • Castañeda, Emmanuel J. Gutiérrez
  • Castillo, Antonio A. Torres
  • Reyes, Iván
OrganizationsLocationPeople

article

Surface quality evaluation of hot deformed aluminum

  • Espinosa, Luis Alberto
Abstract

The surface quality of a heat treatable Al-Si-Mg alloy by means compression tests at 450°C was evaluated. Samples were obtained from an ingot with unidirectional solidification in order to obtain a microstructural gradient influenced by the cooling and solidification rate. The samples were heat treated by homogenization at 520°C for 4 hours prior to deformation by compression. Inverted optical and scanning electron microscopes were used to assess the surface damage of deformed samples. Analysis of deformed surface indicates a greater influence of microstructural refinement on hardening rate. It was found that the samples solidified at high cooling rates showed no defects, but at low cooling rates produced growth of grain size and intermetallic phases and thereby the high incidence of cracks in the surface.p>

Topics
  • surface
  • grain
  • grain size
  • phase
  • aluminium
  • crack
  • compression test
  • intermetallic
  • homogenization
  • solidification