Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haapanen, Janne

  • Google
  • 13
  • 45
  • 165

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2020Protective stainless steel micropillars for enhanced photocatalytic activity of TiO2 nanoparticles during wear8citations
  • 2019Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization7citations
  • 2019Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated paper4citations
  • 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization7citations
  • 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization7citations
  • 2016Wetting hysteresis induced by temperature changes49citations
  • 2016TiO2 nanostructures for dye-sensitized solar cells (DSSCs) on a glass substratecitations
  • 2015Long-term corrosion protection by a thin nano-composite coating24citations
  • 2015Coating of Silica and Titania Aerosol Nanoparticles by Silver Vapor Condensation9citations
  • 2015Roll-to-roll coating by liquid flame spray nanoparticle deposition4citations
  • 2014Abrasion and Compression Resistance of Liquid-Flame-Spray-Deposited Functional Nanoparticle Coatings on Papercitations
  • 2013Compressibility of porous TiO₂ nanoparticle coating on paperboard11citations
  • 2013ToF-SIMS analysis of UV-switchable TiO₂-nanoparticle-coated paper surface35citations

Places of action

Chart of shared publication
Saarinen, Jarkko J.
3 / 6 shared
Suvanto, Mika
1 / 5 shared
Mäkelä, Jyrki Mikael
7 / 16 shared
Temerov, Filipp
1 / 4 shared
Ammosova, Lena
1 / 1 shared
Pudas, Marko
3 / 10 shared
Ronkainen, Helena
3 / 74 shared
Valden, Mika
3 / 37 shared
Mahlberg, Riitta
3 / 23 shared
Sorvali, Miika
4 / 8 shared
Vuori, Leena
3 / 6 shared
Honkanen, Mari
2 / 22 shared
Mäkelä, Jyrki
1 / 1 shared
Gunell, Marianne
1 / 1 shared
Toivakka, Martti
6 / 54 shared
Rosqvist, Emil
1 / 12 shared
Eerola, Erkki
1 / 1 shared
Brobbey, Kofi J.
1 / 1 shared
Peltonen, Jouko
1 / 24 shared
Makela, Jyrki M.
1 / 1 shared
Honkanen, Mari Hetti
2 / 59 shared
Heydari, Golrokh
1 / 3 shared
Tuominen, Mikko
6 / 9 shared
Moghaddam, Maziar Sedighi
1 / 1 shared
Claesson, Per M.
2 / 15 shared
Fielden, Matthew
1 / 2 shared
Bollström, Roger
1 / 10 shared
George, Steven M.
1 / 3 shared
Mäkelä, Jyrki M.
4 / 6 shared
Saarinen, Jarkko
4 / 6 shared
Törngren, Björn
1 / 3 shared
Kääriäinen, Tommi
1 / 3 shared
Swerin, Agne
1 / 7 shared
Ejenstam, Lina
1 / 2 shared
Pan, Jinshan
1 / 37 shared
Yli-Ojanperä, Jaakko
1 / 2 shared
Juuti, Paxton
1 / 3 shared
Harra, Juha
1 / 6 shared
Vippola, Minnamari
1 / 58 shared
Roumeli, Eleftheria
1 / 7 shared
Stepien, Milena
4 / 4 shared
Kuusipalo, Jurkka
4 / 14 shared
Teisala, Hannu
4 / 4 shared
Aromaa, Mikko
2 / 2 shared
Chinga-Carrasco, Gary
1 / 4 shared
Chart of publication period
2020
2019
2018
2016
2015
2014
2013

Co-Authors (by relevance)

  • Saarinen, Jarkko J.
  • Suvanto, Mika
  • Mäkelä, Jyrki Mikael
  • Temerov, Filipp
  • Ammosova, Lena
  • Pudas, Marko
  • Ronkainen, Helena
  • Valden, Mika
  • Mahlberg, Riitta
  • Sorvali, Miika
  • Vuori, Leena
  • Honkanen, Mari
  • Mäkelä, Jyrki
  • Gunell, Marianne
  • Toivakka, Martti
  • Rosqvist, Emil
  • Eerola, Erkki
  • Brobbey, Kofi J.
  • Peltonen, Jouko
  • Makela, Jyrki M.
  • Honkanen, Mari Hetti
  • Heydari, Golrokh
  • Tuominen, Mikko
  • Moghaddam, Maziar Sedighi
  • Claesson, Per M.
  • Fielden, Matthew
  • Bollström, Roger
  • George, Steven M.
  • Mäkelä, Jyrki M.
  • Saarinen, Jarkko
  • Törngren, Björn
  • Kääriäinen, Tommi
  • Swerin, Agne
  • Ejenstam, Lina
  • Pan, Jinshan
  • Yli-Ojanperä, Jaakko
  • Juuti, Paxton
  • Harra, Juha
  • Vippola, Minnamari
  • Roumeli, Eleftheria
  • Stepien, Milena
  • Kuusipalo, Jurkka
  • Teisala, Hannu
  • Aromaa, Mikko
  • Chinga-Carrasco, Gary
OrganizationsLocationPeople

document

Roll-to-roll coating by liquid flame spray nanoparticle deposition

  • Stepien, Milena
  • Kuusipalo, Jurkka
  • Teisala, Hannu
  • Toivakka, Martti
  • Saarinen, Jarkko J.
  • Tuominen, Mikko
  • Mäkelä, Jyrki Mikael
  • Haapanen, Janne
  • Aromaa, Mikko
Abstract

<p>Nanostructured coatings have been prepared on a flexible, moving paperboard using deposition of ca. 10-50-nm-sized titanium dioxide and silicon dioxide nanoparticles generated by a liquid flame spray process, directly above the paperboard, to achieve improved functional properties for the material. With moderately high production rate (~ g/min), the method is applicable for thin aerosol coating of large area surfaces. LFS-made nanocoating can be synthesized e.g. on paper, board or polymer film in roll-to-roll process. The degree of particle agglomeration is governed by both physicochemical properties of the particle material and residence time in aerosol phase prior to deposition. By adjusting the speed of the substrate, even heat sensitive materials can be coated. In this study, nanoparticles were deposited directly on a moving paperboard with line speeds 50-300 m/min. Functional properties of the nanocoating can be varied by changing nanoparticle material; e.g. Ti02 and Si02 are used for changing the surface wetting properties. If the liquid precursors are dissolved in one solution, synthesis of multi component nanoparticle coatings is possible in a one phase process. Here, we present analysis of the properties of LFS-fabricated nanocoatings on paperboard. The thermophoretic flux of nanoparticles is estimated to be very high from the hot flame onto the cold substrate. A highly hydrophobic coating was obtained by a mass loading in the order of 50-100 mg/m&lt;sup&gt;2&lt;/sup&gt; of titanium dioxide on the paperboard.</p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • phase
  • Silicon
  • titanium