Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pawley, C. J.

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014In-situ TEM studies of ion-irradiation induced bubble development and mechanical deformation in model nuclear materials6citations

Places of action

Chart of shared publication
Hinks, Jonathan
1 / 14 shared
Oliviero, E.
1 / 8 shared
Barbot, J. F.
1 / 1 shared
Greaves, Graeme
1 / 26 shared
Donnelly, Stephen
1 / 18 shared
Beaufort, M. F.
1 / 8 shared
Webb, R. P.
1 / 4 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Hinks, Jonathan
  • Oliviero, E.
  • Barbot, J. F.
  • Greaves, Graeme
  • Donnelly, Stephen
  • Beaufort, M. F.
  • Webb, R. P.
OrganizationsLocationPeople

article

In-situ TEM studies of ion-irradiation induced bubble development and mechanical deformation in model nuclear materials

  • Hinks, Jonathan
  • Oliviero, E.
  • Pawley, C. J.
  • Barbot, J. F.
  • Greaves, Graeme
  • Donnelly, Stephen
  • Beaufort, M. F.
  • Webb, R. P.
Abstract

<p>The MIAMI* facility at the University of Huddersfield is one of a number of facilities worldwide that permit the ion irradiation of thin foils in-situ in a transmission electron microscope. MIAMI has been developed with a particular focus on enabling the in-situ implantation of helium and hydrogen into thin electron transparent foils, necessitating ion energies in the range 1 - 10 keV. In addition, however, ions of a variety of species can be provided at energies of up to 100 keV (for singly charged ions), enabling studies to focus on the build up of radiation damage in the absence or presence of implanted gas. This paper reports on a number of ongoing studies being carried out at MIAMI, and also at JANNuS (Orsay, France) and the IVEM / Ion Accelerator Facility (Argonne National Lab, US). This includes recent work on He bubbles in SiC and Cu; the former work concerned with modification to bubble populations by ion and electron beams and the latter project concerned with the formation of bubble super-lattices in metals. A study is also presented consisting of experiments aimed at shedding light on the origins of the dimensional changes known to occur in nuclear graphite under irradiation with either neutrons or ions. Single crystal graphite foils have been irradiated with 60 keV Xe ions in order to create a non-uniform damage profile throughout the foil thickness. This gives rise to varying basal-plane contraction throughout the foil resulting in almost macroscopic (micron scale) deformation of the graphite. These observations are presented and discussed with a view to reconciling them with current understanding of point defect behavior in graphite.*Microscope and Ion Accelerator for Materials Investigations</p>

Topics
  • impedance spectroscopy
  • single crystal
  • experiment
  • Hydrogen
  • transmission electron microscopy
  • point defect