People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Greaves, Graeme
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Investigation of the microstructure of He+ ion-irradiated TiBe12 and CrBe12 using ex-situ transmission electron microscopycitations
- 2023From high-entropy alloys to high-entropy ceramics : The radiation-resistant highly concentrated refractory carbide (CrNbTaTiW)Ccitations
- 2022Investigating Irradiation Creep of Zircaloy-4 Using In-Situ Proton Irradiation and Transmission Electron Microscopy
- 2022Observations of He Platelets During He Ion Irradiation in 3C SiCcitations
- 2021Nanostructuring Germanium Nanowires by In Situ TEM Ion Irradiationcitations
- 2021Helium implantation damage resistance in nanocrystalline W-Ta-V-Cr high entropy alloyscitations
- 2021Comparative irradiation response of an austenitic stainless steel with its high-entropy alloy counterpartcitations
- 2020Prototypic Lightweight Alloy Design for Stellar-Radiation Environmentscitations
- 2020Low-temperature investigations of ion-induced amorphisation in silicon carbide nanowhiskers under helium irradiationcitations
- 2020Synthesis and in situ ion irradiation of A-site deficient zirconate perovskite ceramicscitations
- 2020In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloycitations
- 2020Radiation Damage Suppression in AISI-316 Steel Nanoparticles: Implications for the Design of Future Nuclear Materialscitations
- 2019Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiationcitations
- 2019Radiation-induced precipitation with concurrent bubbles formation in an austenitic stainless steel (AISI-348)citations
- 2019Understanding amorphization mechanisms using ion irradiation in situ a TEM and 3D damage reconstructioncitations
- 2019Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloycitations
- 2019Direct Comparison of Tungsten Nanoparticles and Foils under Helium Irradiation at High Temperatures Studied via In-Situ Transmission Electron Microscopy
- 2019Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEMcitations
- 2018Energetic particle irradiation study of TiN coatingscitations
- 2017Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungstencitations
- 2016Preliminary assessment of the irradiation behaviour of the FeCrMnNi High-Entropy Alloy for nuclear applications
- 2014In-situ TEM studies of ion-irradiation induced bubble development and mechanical deformation in model nuclear materialscitations
- 2014In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environmentscitations
- 2014Helium bubble formation in nuclear glass by in-situ TEM ion implantationcitations
- 2014In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphenecitations
- 2008A cross-sectional transmission electron microscopy study of iron recovered from a laser-heated diamond anvil cellcitations
Places of action
Organizations | Location | People |
---|
article
In-situ TEM studies of ion-irradiation induced bubble development and mechanical deformation in model nuclear materials
Abstract
<p>The MIAMI* facility at the University of Huddersfield is one of a number of facilities worldwide that permit the ion irradiation of thin foils in-situ in a transmission electron microscope. MIAMI has been developed with a particular focus on enabling the in-situ implantation of helium and hydrogen into thin electron transparent foils, necessitating ion energies in the range 1 - 10 keV. In addition, however, ions of a variety of species can be provided at energies of up to 100 keV (for singly charged ions), enabling studies to focus on the build up of radiation damage in the absence or presence of implanted gas. This paper reports on a number of ongoing studies being carried out at MIAMI, and also at JANNuS (Orsay, France) and the IVEM / Ion Accelerator Facility (Argonne National Lab, US). This includes recent work on He bubbles in SiC and Cu; the former work concerned with modification to bubble populations by ion and electron beams and the latter project concerned with the formation of bubble super-lattices in metals. A study is also presented consisting of experiments aimed at shedding light on the origins of the dimensional changes known to occur in nuclear graphite under irradiation with either neutrons or ions. Single crystal graphite foils have been irradiated with 60 keV Xe ions in order to create a non-uniform damage profile throughout the foil thickness. This gives rise to varying basal-plane contraction throughout the foil resulting in almost macroscopic (micron scale) deformation of the graphite. These observations are presented and discussed with a view to reconciling them with current understanding of point defect behavior in graphite.*Microscope and Ion Accelerator for Materials Investigations</p>