Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Razzaq, Muhammad Yasar

  • Google
  • 12
  • 23
  • 210

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 20234D Printing of Electroactive Triple-Shape Composites13citations
  • 20224D Printing of Multicomponent Shape-Memory Polymer Formulations34citations
  • 2020Polyetheresterurethane based porous scaffolds with tailorable architectures by supercritical CO2 foaming4citations
  • 2019Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment17citations
  • 2019Matching magnetic heating and thermal actuation for sequential coupling in hybrid composites by design4citations
  • 2018Reprogrammable, magnetically controlled polymeric nanocomposite actuators58citations
  • 2018Reprogrammable, magnetically controlled polymeric nanocomposite actuators58citations
  • 2018Thermally-induced actuation of magnetic nanocomposites based on Oligo(ω-pentadecalactone) and covalently integrated magnetic nanoparticles3citations
  • 2015Thermally Controlled Shape-Memory Investigations of Nanocomposites Based on Oligo(<i>ω</i>-pentadecalactone) and Magnetic Nanoparticles Acting as Crosslinks2citations
  • 2013Tailoring the recovery force in magnetic shape-memory nanocomposites3citations
  • 2012Shape-Memory Properties of Nanocomposites based on Poly(ω-pentadecalactone) and Magnetic Nanoparticles1citations
  • 2012Oligo(omega-pentadecalactone) decorated magnetic nanoparticles13citations

Places of action

Chart of shared publication
Gonzalez-Gutierrez, Joamin
2 / 57 shared
Schmidt, Daniel
2 / 14 shared
Ruch, David
2 / 9 shared
Westermann, Stephan
2 / 6 shared
Farhan, Muhammad
1 / 6 shared
Das, Rohan
1 / 1 shared
Mertz, Grégory
1 / 1 shared
Lendlein, Andreas
6 / 37 shared
Behl, Marc
6 / 12 shared
Mazurek-Budzyñska, M.
1 / 1 shared
Nöchel, Ulrich
2 / 4 shared
Mazurek-Budzyńska, Magdalena
1 / 1 shared
Rokicki, Gabriel
1 / 9 shared
Heuchel, Matthias
2 / 6 shared
Rudolph, Tobias
1 / 2 shared
Jiang, Yi
1 / 6 shared
Mansfeld, Ulrich
1 / 5 shared
Gould, Oliver E. C.
1 / 4 shared
Kratz, Karl
1 / 10 shared
Wang, Li
1 / 26 shared
Frank, Ute
1 / 1 shared
Koetz, Joachim
1 / 11 shared
Szczerba, Wojciech
1 / 3 shared
Chart of publication period
2023
2022
2020
2019
2018
2015
2013
2012

Co-Authors (by relevance)

  • Gonzalez-Gutierrez, Joamin
  • Schmidt, Daniel
  • Ruch, David
  • Westermann, Stephan
  • Farhan, Muhammad
  • Das, Rohan
  • Mertz, Grégory
  • Lendlein, Andreas
  • Behl, Marc
  • Mazurek-Budzyñska, M.
  • Nöchel, Ulrich
  • Mazurek-Budzyńska, Magdalena
  • Rokicki, Gabriel
  • Heuchel, Matthias
  • Rudolph, Tobias
  • Jiang, Yi
  • Mansfeld, Ulrich
  • Gould, Oliver E. C.
  • Kratz, Karl
  • Wang, Li
  • Frank, Ute
  • Koetz, Joachim
  • Szczerba, Wojciech
OrganizationsLocationPeople

article

Tailoring the recovery force in magnetic shape-memory nanocomposites

  • Razzaq, Muhammad Yasar
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>Composites from magnetic nanoparticles in a shape-memory polymer (SMP) matrix allow a remote actuation of the shape-memory effect by exposure to alternating magnetic fields. At the same time the incorporation of MNP may affect the thermal properties and the structural functions of the SMP.</jats:p><jats:p>Here, we explored the adjustability of the recovery force as an important structural function in magnetic shape-memory nanocomposites (mSMC) by variation of the programing temperature (<jats:italic>T</jats:italic><jats:sub>prog</jats:sub>) and nanoparticle weight content. The nanocomposites were prepared by coextrusion of silica coated magnetite nanoparticles (mNP) with an amorphous polyether urethane (PEU) matrix. In tensile tests in which <jats:italic>T</jats:italic><jats:sub>prog</jats:sub> was varied between 25 and 70 °C and the particle content from 0 to 10 wt% it was found that the Young’s moduli (<jats:italic>E</jats:italic>) decreased with temperature and particle content. Cyclic, thermomechanical experiments with a recovery module under strain-control conditions were performed to monitor the effect of mNP and <jats:italic>T</jats:italic><jats:sub>prog</jats:sub> on the recovery force of the composites. During the strain-control recovery the maximum stress (<jats:italic>σ</jats:italic><jats:sub>m,r</jats:sub>) at a characteristic temperature (<jats:italic>T</jats:italic><jats:sub>σ,max</jats:sub>) was recorded. By increasing the mNP content from 0 to 10 wt% in composites, <jats:italic>σ</jats:italic><jats:sub>m,r</jats:sub> of 1.9 MPa was decreased to 1.25 MPa at a <jats:italic>T</jats:italic><jats:sub>prog</jats:sub> = 25 °C. A similar decrease in <jats:italic>σ</jats:italic><jats:sub>m,r</jats:sub> for nanocomposites with different mNP content could be observed when <jats:italic>T</jats:italic><jats:sub>prog</jats:sub> was increased from 25 °C to 70 °C. It can be concluded that the lower the deformation temperature and the particle content the higher is the recovery force.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • amorphous
  • experiment