Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stegall, D. E.

  • Google
  • 1
  • 2
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012The Role of Stacking Fault Energy on the Indentation Size Effect of FCC Pure Metals and Alloys7citations

Places of action

Chart of shared publication
Mamun, M. A.
1 / 1 shared
Elmustafa, A. A.
1 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Mamun, M. A.
  • Elmustafa, A. A.
OrganizationsLocationPeople

document

The Role of Stacking Fault Energy on the Indentation Size Effect of FCC Pure Metals and Alloys

  • Mamun, M. A.
  • Elmustafa, A. A.
  • Stegall, D. E.
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>We investigated the effect of stacking fault free energy (SFE), on the magnitude of the indentation size effect (ISE) of several pure FCC metals using nanoindentation. The metals chosen were 99.999% Aluminum, 99.95% Nickel, 99.95% Silver, and 70/30 Copper Zinc (α-brass). Aluminum has a high SFE of about 200 <jats:italic>mJ</jats:italic>/ <jats:italic>m<jats:sup>2</jats:sup></jats:italic>, whereas α -brass has a low SFE of less than 10 <jats:italic>mJ/ m<jats:sup>2</jats:sup></jats:italic>. Nickel and Silver have intermediate SFE of about <jats:italic>128 mJ/ m<jats:sup>2</jats:sup></jats:italic> and <jats:italic>22 mJ/m<jats:sup>2</jats:sup></jats:italic> respectively. The SFE is an important interfacial characteristic and plays a significant role in the deformation of FCC metals due to its influence on dislocation movement and morphology. The SFE is a measure of the distance between partial dislocations and has a direct impact on the ability of dislocations to cross slip during plastic deformation. The lower the SFE the larger the separation between partial dislocations and thus cross slip and dynamic recovery are inhibited. The SFE impacts pure metals differently from alloys. It was discovered that the characteristic ISE behavior for the pure metals was different when compared to the α-brass which is an alloy. Several additional alloys were chosen for comparison including 7075 Aluminum and 70/30 Nickel Copper.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • nickel
  • silver
  • aluminium
  • zinc
  • laser emission spectroscopy
  • nanoindentation
  • dislocation
  • copper
  • brass
  • stacking fault
  • supercritical fluid extraction